فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت آموزش کامل الگوریتم بهینه سازی PSO در 72 اسلاید

اختصاصی از فی فوو پاورپوینت آموزش کامل الگوریتم بهینه سازی PSO در 72 اسلاید دانلود با لینک مستقیم و پر سرعت .

پاورپوینت آموزش کامل الگوریتم بهینه سازی PSO در 72 اسلاید


پاورپوینت آموزش کامل الگوریتم بهینه سازی PSO در 72 اسلاید

 

 

 

 

روش PSO یا به لاتین (Particle swarm optimization) یک روش سراسری کمینه‌سازی است که با استفاده از آن می‌توان با مسائلی که جواب آنها یک نقطه یا سطح در فضای n بعدی می‌باشد، برخورد نمود. در اینچنین فضایی، فرضیاتی مطرح می‌شود و یک سرعت ابتدایی به آنها اختصاص داده می‌شود، همچنین کانال‌های ارتباطی بین ذرات درنظر گرفته می‌شود. سپس این ذرات در فضای پاسخ حرکت می‌کنند، و نتایج حاصله بر مبنای یک «ملاک شایستگی» پس از هر بازهٔ زمانی محاسبه می‌شود. با گذشت زمان، ذرات به سمت ذراتی که دارای ملاک شایستگی بالاتری هستند و در گروه ارتباطی یکسانی قرار دارند، شتاب می‌گیرند. علی‌رغم اینکه هر روش در محدوده‌ای از مسائل به خوبی کار می‌کند، این روش در حل مسائل بهینه‌سازی پیوسته موفقیت بسیاری از خود نشان داده است.

فهرست مطالب:

مقدمه

تعریف موضوع

تاریخچه

توضیح الگوریتم PSO

روشهای بهینه سازی جمعیتی

چند تعریف

ایده پایه

ویژگی ها و کاربردها

روایط ریاضی

چگئنگی حرکات ذرات

و...


دانلود با لینک مستقیم


پاورپوینت آموزش کامل الگوریتم بهینه سازی PSO در 72 اسلاید

مقاله در مورد طراحی و شبیه سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

اختصاصی از فی فوو مقاله در مورد طراحی و شبیه سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد طراحی و شبیه سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی


مقاله در مورد طراحی و شبیه سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه99

 

بخشی از فهرست مطالب

چکیده                                                          1

فصل1: مقدمه

2

  ۱-۱  طرح مسئله

2

  ۲-۱  اهداف تحقیق

۳

  ۳-۱  معرفی فصل های مورد بررسی در این تحقیق

۴

فصل2: انرژی باد و انواع توربین های بادی

۵

  ۱-۲  انرژی باد

۶

      ۱-۱-۲  منشا باد

۶

      ۲-۱-۲  پیشینه استفاده از باد

۷

      ۳-۱-۲  مزایای انرژی بادی

۸

      ۴-۱-۲  ناکارآمدیهای انرژی بادی

۹

      ۵-۱-۲  وضعیت استفاده از انرژی باد در سطح جهان

۱۰

  ۲-۲  فناوری توربین های بادی

۱۱

      ۱-۲-۲  توربینهای بادی با محور چرخش افقی

۱۲

      ۲-۲-۲  توربینهای بادی با محور چرخش عمودی

۱۲

      ۳-۲-۲  اجزای اصلی توربین بادی

۱۴

      ۴-۲-۲  چگونگی تولید توان در سیستم های بادی

۱۵

          ۱-۴-۲-۲  منحنی پیش بینی توان توربین باد

۱۵

  ۳-۲  تقسیم بندی سیستم های تبدیل کننده انرژی باد (WECS)  بر اساس نحوه عملکرد

۲۰

      ۱-۳-۲  سیستم های تبدیل کننده انرژی باد (WECS)  سرعت ثابت

۲۰

      ۲-۳-۲  سیستم های تبدیل کننده انرژی باد (WECS)  سرعت متغیر

۲۲

      ۳-۳-۲  سیستم های تبدیل کننده انرژی باد بر مبنای ژنراتور القایی با تغذیه دوگانه (DFIG)

۲۴

      ۴-۳-۲  سیستم های تبدیل کننده انرژی باد مجهز به توربین های سرعت متغیر با مبدل  فرکانسی با ظرفیت کامل

۲۶

فصل۳: تاریخچه کنترل فرکانس سیستم های قدرت در حضور واحدهای بادی، معرفی مدل ریاضی و الگوریتم ازدحام ذرات

۲۷

  ۱-۳  مرورری بر کارهای انجام شده

۲۹

  ۲-۳  کنترل DFIG

۳۳

  ۳-۳  مدل دینامیکی سیستم تنظیم فرکانس توربین بادی با ژنراتور القایی تغذیه دوگانه

۳۶

  ۴-۳  مدل دینامیکی ساختار تنظیم فرکانس سیستم تک ناحیه ای در حضور توربین بادی با ژنراتور القایی تغذیه دوگانه (DFIG)

۴۰

  ۵-۳  الگوریتم حرکت گروهی پرندگان یا ازدحام ذرات PSO

۴۴

  ۶-۳  نتیجه گیری

۴۷

فصل۴: طراحی کنترل کننده PI بهینه سازی شده توسط الگوریتم ازدحام ذرات

۴۸

  ۱-۴  بهینه سازی طراحی کنترل‌کننده PI با استفاده از روش بهینه سازی هوشمند ازدحام ذرات (PSO)

۴۹

      ۱-۱-۴  نتایج شبیه سازی کنترل کننده PI بهینه سازی شده با الگوریتم PSO

۵۳

۴-۲  نتیجه گیری

۵۹

فصل پنجم: طراحی کنترل کننده فازی

۶۱

  ۱-۵  منطق فازی

۶۲

      ۱-۱-۵  تعریف مجموعه فازی

۶۲

      ۲-۱-۵  مزایای استفاده از منطق فازی

۶۳

۵-۲  طراحی کنترل کننده فازی

۶۴

      ۱-۲-۵  ساختار یک کنترل کننده فازی

۶۴

          ۱-۱-۲-۵  فازی کننده

۶۵

          ۲-۱-۲-۵  پایگاه قواعد

۶۶

          ۳-۱-۲-۵  موتور استنتاج

۶۶

          ۴-۱-۲-۵  غیر فازی ساز

۶۷

  ۳-۵  طراحی کنترل‌کننده فازی بهینه شده با الگوریتم PSO

۶۸

      5-3-1  نتایج شبیه سازی

۷۲

فصل ششم: نتیجه گیری و پیشنهادات

78

  ۱-۶ نتیجه گیری

۷۹

  ۲-۶  پیشنهادات

۸۱

 

 

 

 

 

 

 


 

فهرست جدول­ها

 

جدول ۱-۲: انواع توربین های عرضه شده در بازار

۱۱

جدول ۴-۱: اطلاعات شبیه سازی

۵۱

جدول ۲-۴: پارامترهای انتخابی الگوریتم PSO

۵۳

جدول ۳-۴: اطلاعات شبیه سازی

۵۳

جدول ۱-۵: پارامترهای انتخابی الگوریتم PSO

۷۳

جدول ۲-۵: پارامترهای بهینه شده کتترل کننده فازی با الگوریتم PSO

۷۳

 


 

فهرست شکل­ها

 

شکل ۱-۲ : تولید باد

۶

شکل ۲-۲: وسیله ای بر اساس طرح ایرانیان به منظور استفاده از انرژی باد [۱۰‍]

۷

شکل ۳-۲: ساختمان توربین بادی محور افقی [۱۱‍‍]

۱۳

شکل ۴-۲: توربین بادی نوع داریوس (محور عمودی) [۱۱]

۱۳

شکل ۵-۲: نمایی از یک سیستم تبدیل انرژی بادی در توربین بادی با محور افقی [۱‍]

۱۴

شکل ۶-۲: دیاگرام سیستم بادی [۲]

۱۵

شکل ۷-۲: منحنی توان-سرعت باد یک توربین بادی زاویه گام قابل تنظیم ۱۵۰۰ کیلوواتی با سرعت قطع خروجی ۲۵ متربرثانیه [۲‍]

۱۶

شکل ۸-۲ : نمودار تغییرات  بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام متغیر [۱]

۱۸

شکل ۹-۲:  نمودار تغییرات  بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام متغیر [۱]

۱۹

شکل ۱۰-۲: نمودار تغییرات  و  بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام ثابت ‌[۱]

۲۰

شکل ۱۱-۲: توربین بادی سرعت ثابت

۲۱

شکل ۱۲-۲: آرایشی از توربین بادی با سرعت متغیر محدود با مقاومت متغیر رتور

۲۳

شکل ۱۳-۲: ساختمان توربین بادی نوع DFIG

۲۵

شکل ۱-۳: نمایی از عملکرد سیستم تبدیل انرژی باد

۳۴

شکل ۲-۳: ساختار کنترل کننده توربین بادی DFIG  [۳۰]

۳۵

شکل ۳-۳: مدل دینامیکی سیستم قدرت تک ناحیه ای در حضور واحدهای تولید غیر سنتی (بادی)[۳۰]

۳۶

شکل ۴-۳: مدل دینامیکی توربین بادی دارای ژنراتور DFIG  به منظور تنظیم فرکانس[۳۰]

۳۷

شکل ۵-۳: بلوک دیاگرام سیستم تنظیم فرکانس سیستم قدرت تک ناحیه ای در حضور توربین بادی DFIG [۳۰]

۴۱

شکل ۶-۳: شماتیک برداری روابط الگوریتم PSO

۴۵

شکل ۷-۳: فلوچارت الگوریتم PSO

۴۶

شکل ۱-۴: سیستم حلقه بسته

۵۰

شکل ۲-۴: نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI کلاسیک  به ازای تغییر بار ، و

۵۱

شکل ۳-۴: سیستم حلقه بسته با اضافه کردن انتگرال مربع خطا

۵۲

شکل ۴-۴: نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI بهینه به ازای تغییر بار ، و

۵۴

شکل ۵-۴: مقایسه نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI بهینه و کلاسیک به ازای تغییر بار  

۵۵

شکل 6-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI کلاسیک برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۶

شکل7-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۶

شکل 8-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI  کلاسیک برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۷

شکل 9-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۷

شکل ۱0-۴: تغییرات توان تولید شده توسط واحدهای بادی با در نظر گرفتن کنترل کننده PI کلاسیک برای کنترل سرعت توربین بادی

۵۸

شکل ۱1-۴: تغییرات توان تولید شده توسط واحدهای بادی با در نظر گرفتن کنترل کننده PI بهینه برای کنترل سرعت  توربین بادی

۵۹

شکل ۱-۵: نمایی از یک کنترل کننده فازی

۶۵

شکل ۲-۵: مثال هایی از توابع عضویت: (a) تابع z ،  (b) گوسین، (c) تابع s، (d-f) حالتهای مختلف مثلثی، (g-i) حالتهای مختلف ذوزنقه ای، (j) گوسین تخت،(k)  مستطیلی، (l) تک مقداری

۶۵

شکل ۳-۵: تابع عضویت خطا

۶۹

شکل ۴-۵: تابع عضویت مشتق خطا

۶۹

شکل ۵-۵: نمودار تغییرات سرعت توربین بادی برای کنترل کننده PI بهینه به ازای تغییر بار

۷۲

شکل ۶-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش 

۷۴

شکل ۷-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش 

۷۴

شکل ۸-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش 

۷۵

شکل ۹-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش 

۷۵

شکل ۱۰-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۶

شکل ۱۱-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۶

شکل ۱۲-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۷

شکل ۱۳-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۷

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


چکیده

 

امروزه با توجه به نیاز روزافزون بشر به انرژی از یک سو و کاهش منابع سنتی انرژی از سویی دیگر، نیاز به یافتن منابع جدید انرژی به روشنی احساس می گردد. جایگزینی منابع فسیلی با انرژی های نو و تجدیدپذیر راهکاری است که مدت هاست مورد توجه کشورهای پیشرفته جهان قرار گرفته است. در بین منابع انرژی های نو، انرژی باد به دلیل پاک و پایان ناپذیر بودن، داشتن قابلیت تبدیل به انرژی الکتریکی و رایگان بودن گزینه مناسبی برای این منظور می باشد. مشکل عمده در بهره برداری از آن این است که تغییرات لحظه ای سرعت باد باعث ایجاد نوسانات در توان خروجی توربین بادی می شود که این نوسانات به شکل تغییر فرکانس در سرتاسر سیستم منعکس می شود و عملکرد سیستم را تحت تاثیر قرار می دهد. به صورت سنتی وظیفه کنترل فرکانس به عهده واحد های تولید کننده انرژی سنتی می باشد اما با افزایش مشارکت واحدهای تولید بادی در تولید انرژی برای بهبود عملکرد سیستم، آنها نیز باید در کنترل فرکانس شرکت کنند.

 

این پایانامه به بررسی نقش مشارکت واحدهای تولید بادی درکنترل فرکانس پرداخته است و برای کنترل فرکانس، کنترل هر چه بهتر تغییرات سرعت توربین های بادی پیشنهاد شده است. ابتدا سیستم قدرت مورد نظر با استفاده از کنترل کننده PI کلاسیک برای کنترل کردن سرعت ژنراتور توربین بادی شبیه سازی شده و در ادامه به منظور بهبود عملکرد سیستم، بهینه سازی تنظیم پارامترهای کنترل کننده PI  با الگوریتم بهینه سازی هوشمند ازدحام ذرات پیشنهاد شده است. در پایان به علت اینکه سیستم های قدرت در حضور واحدهای بادی در معرض تغییر پارامترها و عدم قطعیت های زیادی قرار می گیرند جایگزینی کنترل کننده PI با کنترل کننده فازی پیشنهاد شده است که غیر خطی می باشد و عملکرد مقاومتری نسبت به تغییر پارامترهای سیستم از خود نشان می دهد. بدیهی است با بهینه سازی کنترل کننده فازی مورد نظر با الگوریتم بهینه سازی هوشمند ازدحام ذرات نتایج مطلوب تری بدست می آید.

 

 

 

کلید واژه: کنترل فرکانس سیستم قدرت- سیستم های تبدیل کننده انرژی باد- کنترل کننده PI – کنترل کننده فازی- الگوریتم ازدحام ذرات

 

 

 

 

 

 

 

فصل اول

 

مقدمه

 

 

 

 

 

۱-۱  طرح مسئله

 

امروزه با توجه به نیاز روزافزون بشر به انرژی الکتریکی از یک سو و محدودیت ذخایر سوخت‌های فسیلی و همچنین نگرانی‌های زیست محیطی در پی افزایش گاز دی اکسید کربن و دیگر گاز‌های گلخانه‌ای از سویی دیگر، نیاز به یافتن منابع جدید انرژی به روشنی احساس می‌گردد. جایگزینی منابع فسیلی با انرژی‌های نو و تجدیدپذیر راهکاری است که مدت‌هاست مورد توجه کشور‌های پیشرفته جهان قرار گرفته است. یکی از مهمترین انرژی‌های تجدید پذیر، انرژی باد می‌باشد. انرژی باد پایان ناپذیر، رایگان و پاک است در ضمن به راحتی قابل تبدیل به انرژی الکتریکی می‌باشد پس می‌تواند در بین منابع انرژی‌های نو گزینه مناسبی جهت جایگزینی با منابع فسیلی باشد[۱].

 

استفاده از انرژی باد در هر سال رشد ۱۰% را در دنیا و رشد ۳۷% را در اروپا داشته است. پیشبینی می‌شود تا سال ۲۰۲۰ در حدود ۱۰% انرژی کل دنیا توسط نیروگاه‌های بادی تولید شود که تا ۵۰% در سال ۲۰۵۰ افزایش خواهد داشت[۲‍].

 

با وجود اینکه استفاده از انرژی باد به منظور تولید انرژی الکتریکی پیشینه زیادی دارد اما به دلیل نفوذ کمی که در تولید انرژی داشته‌اند تاثیر وجود آنها در شبکه چندان مورد بررسی قرار نگرفته است. منبع انرژی باد غیر قابل پیش بینی است بنابراین اضافه شدن مقدار قابل توجهی از واحد‌های تولید بادی به شبکه‌های الکتریکی موجود، تاثیر قابل ملاحظه‌ای بر طراحی، کارکرد و کنترل شبکه خواهد گذاشت.

 

 به علت متغیر بودن سرعت باد سرعت توربین‌های بادی مدام در حال تغییر است و از آنجایی که توان خروجی توربین‌های بادی با مکعب سرعت باد متناسب است تغییرات لحظه‌ای سرعت باد باعث ایجاد نوسانات در توان خروجی توربین بادی می‌شود و این نوسانات به شکل تغییر فرکانس در سرتاسر سیستم منعکس می‌شود. از طرفی می‌دانیم به منظور اینکه یک سیستم قدرت عملکرد رضایت بخشی داشته باشد، ثبات فرکانس در آن امری ضروری است. پس می‌توان گفت در حضور واحد‌های تولید بادی در سیستم ‌های قدرت که آشفتگی‌ها و تغییر پارامتر‌های بیشتری را به سیستم تحمیل می‌کنند کنترل فرکانس سیستم بیش از پیش مورد توجه قرار می‌گیرد و نیازمند مطالعات بیشتری می‌باشد.

 

به صورت سنتی سیستم‌های تبدیل کننده انرژی بادی [1](WECS) در کنترل فرکانس شرکت نمی‌کنند، به این معنی که وقتی فرکانس در شبکه زیاد یا کم می‌شود واحد‌های بادی تولید خود را زیاد یا کم نمی‌کنند بلکه با افزایش یا کاهش تولید واحد‌های سنتی افت یا افزایش فرکانس جهت نگه داشتن فرکانس شبکه در محدوده مجاز خود، جبران می‌شود. اما با افزایش مشارکت واحد‌های تولید بادی در تولید انرژی برای بهبود عملکرد سیستم، آنها نیز باید در کنترل فرکانس شرکت کنند.

 

.

 

این پایان‌نامه به بررسی نقش توربین‌های بادی سرعت متغیر در تنظیم و کنترل فرکانس پرداخته است و به منظور نگه داشتن فرکانس در محدوده مورد نظر کنترل هرچه بهتر تغییرات سرعت توربین‌های بادی پیشنهاد شده است. به این منظور ابتدا سیستم قدرت مورد نظر با استفاده از کنترل‌کننده PI کلاسیک برای کنترل‌کننده سرعت ژنراتور توربین بادی در حضور اغتشاش‌های کوچک شبیه سازی شده و در ادامه به منظور بهبود عملکرد سیستم، بهینه‌سازی تنظیم پارامترهای کنترل‌کننده PI با الگوریتم بهینه‌سازی هوشمند ازدحام ذرات[2] پیشنهاد شده است. از آنجایی که سیستم قدرت در حضور واحد‌های بادی مدام در معرض عدم قطعیت و تغییر پارامتر قرار می‌گیرد پیشنهاد شده است که به منظور کنترل تغییرات سرعت توربین‌های بادی به جای کنترل‌کننده PI، کنترل‌کننده فازی قرار بگیرد که عملکرد مقاومتری نسبت به تغییر پارامتر‌های سیستم از خود نشان می‌دهد. بدیهی است با بهینه‌سازی کنترل‌کننده فازی مورد نظر با الگوریتم بهینه‌سازی  هوشمند ازدحام ذرات نتایج مطلوب تری بدست می‌آید.

 

۲-۱  اهداف تحقیق

 

رشد سریع و نفوذ بیشتر واحد‌های تولید بادی در سیستم‌های قدرت موجب شده روش‌های کنترل فرکانس این سیستم ها متفاوت با روش‌های سنتی کنترل فرکانس باشد. ارائه روش‌های جدید کنترل فرکانس در اینگونه سیستم‌ها همواره مورد توجه محققین بوده است.

 

در زیر به خلاصه ای از اهداف این تحقیق اشاره شده است.

 

  • ارائه مدل فضای حالت برای سیستم قدرت تک ناحیه‌ای که به منظور تولید انرژی از واحد‌های تولید انرژی سنتی و غیرسنتی (بادی) به طور همزمان بهره گرفته است.
  • شبیه‌سازی سیستم معرفی شده با استفاده از کنترل‌کننده PI کلاسیک برای کنترل‌کننده سرعت ژنراتور توربین بادی در حضور اغتشاش‌های کوچک.
  • بهبود عملکرد سیستم با بهینه‌سازی تنظیم پارامتر‌های کنترل‌کننده PI کلاسیک با الگوریتم بهینه‌سازی هوشمند ازدحام ذرات.
  • ارائه کنترل‌کننده فازی به جای کنترل‌کننده PI و تنظیم ضرایب آن با الگوریتم بهینه‌سازی هوشمند ازدحام ذرات و مقایسه عملکرد آنها.

 

۳-۱  معرفی فصل ‌های مورد بررسی در این تحقیق

 

فصل دوم به بررسی انرژی باد، انواع توربین‌های بادی و نحوه عملکرد سیستم‌های تبدیل کننده انرژی باد می‌پردازد. فصل سوم به ارائه مدل فضای حالت سیستم قدرت تک ناحیه‌ای در حضور واحد‌های بادی پرداخته، و برای کنترل تغییرات سرعت توربین‌های بادی از کنترل‌کننده PI کلاسیک استفاده می‌کند و در پایان به معرفی الگوریتم ازدحام ذرات می‌پردازد. در فصل چهارم به منظور بهبود عملکرد، تنظیم پارامتر‌های کنترل‌کننده PI کلاسیک با الگوریتم بهینه‌سازی هوشمند ازدحام ذرات انجام می‌گیرد. فصل پنجم نیز به ارائه کنترل‌کننده فازی بهینه با استفاده از الگوریتم بهینه‌سازی هوشمند ازدحام ذرات برای کنترل‌کننده سرعت ژنراتور توربین بادی می‌پردازد و در نهایت در فصل ششم نتایج با هم مقایسه شده‌اند و زمینه‌ای برای کار‌های بعدی ارائه می‌گردد.

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل دوم

 

انرژی باد و انواع توربین‌های بادی

 

 

 

 

 

یکی از مهمترین انرژی‌های تجدید پذیر، انرژی باد می‌باشد. انرژی باد ارزان، فراوان، پاک و به راحتی قابل تبدیل به انرژی الکتریکی می‌باشد. بخش اول این فصل با نگاهی کلی به منشا انرژی باد و پیشینه استفاده از آن به بیان مزایا و معایب بهره برداری از این انرژی پرداخته و در ادامه وضعیت استفاده از انرژی باد را در سطح جهان بررسی می‌نماید. در بخش دوم انواع توربین‌های بادی بر اساس محور چرخش پره ها مورد بررسی قرار می گیرند، همچنین قسمت های مختلف سیستم بادی، نحوه تولید توان و پارامترهای مهم توربین‌های بادی معرفی می شوند. بخش پایانی این فصل نیز به تقسیم بندی انواع سیستم های تبدیل کننده انرژی باد بر اساس نحوه عملکردشان می‌پردازد.

 

 

 

 

 

۱-۲  انرژی باد

 

۱-۱-۲  منشأ باد

 

انرژی باد، انرژی حاصل از هوای متحرک می‌باشد. هنگامی که تابش خورشید به طور نامساوی به سطوح ناهموار زمین می‌رسد سبب ایجاد تغییرات دما و فشار می‌گرددو در اثر این تغییرات باد به وجود می‌آید. همچنین اتمسفر کره زمین به دلیل حرکت وضعی زمین، گرما را از مناطق گرمسیری به مناطق قطبی انتقال می‌دهد که این امر نیز باعث به وجود آمدن باد می‌گردد. جریان اقیانوسی نیز به صورت مشابه عمل نموده و عامل ۳۰%  انتقال حرارت کل در جهان می‌باشد[۱].

 

 

 

 

 

شکل ۱-۲ : تولید باد

 

در مقیاس جهانی، این جریانات اتمسفری به صورت یک عامل قوی جهت انتقال حرارت و گرما عمل می نمایند.

 

 

 

 

 


[1] Wind energy conversion system

[2] Particle swarm optimization

 


دانلود با لینک مستقیم


مقاله در مورد طراحی و شبیه سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

تحقیق در مورد خازن پذاری بهینه در شبکه فشار ضعیف

اختصاصی از فی فوو تحقیق در مورد خازن پذاری بهینه در شبکه فشار ضعیف دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد خازن پذاری بهینه در شبکه فشار ضعیف


تحقیق در مورد خازن پذاری بهینه در شبکه فشار ضعیف

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه39

 

بخشی از فهرست مطالب

 1 ) مقدمه :

 

 2 1 مدل خازنها :

 

 2 2 مدل شبکه :

 

 2 3 مدل بار :

 

 2 4 1 طریقه محاسبه :

 

 2 4 2 محاسبات اقتصادی :

 

انتخاب بهینه خازن های موازی در شبکه توزیع:

 

شرکت سهامی خدمات مهندسی برق

 

چکیده :

 

1 ) کاربرد خازن های موازی :

 

2 ) مبانی و معیارهای انتخاب :

 

4 ) انتخاب ظرفیت هر واحد :

 

3 ) انتخاب محل در سیستم :

 

5 ) انتخاب ظرفیت بانک های خازنی :

خازن پذاری بهینه در شبکه فشار ضعیف

 محمود نظری :

 1 ) مقدمه :

 در سال 1379 طرح خازنگذاری در شبکه های فشار ضعیف با هدف افزایش ظرفیت تولید و انتقال مطرح گردید. با توجه به استقبال مسئولین از این طرح مناقصات خرید گردید و حدود 1500 مگاوا خازن 5/12 کیلووار 400 ولت خریداری و از اوایل سال 1380 تحویل شرکتهای برق منطقه ای گردید. 70 مگاوا از این خازنها نیز تحویل شرکت برق منطقه ای خراسان شد. از همان زمان تحقیقاتی در این شرکت جهت یافتن روشی برای نصب بهینه خازنها در شبکه آغاز شد. روشی که بتواند تعداد و محلهای نصب بهینه خازنها در فیدرهای فشار ضعیف را بگونه ای که نه تنها مشکلات و معضلاتی در شبکه پدید نیاورد بلکه بیشترین کاهش تلفات را نیز عاید نماید و در عین حال اقتصادی نیز باشد ارائه نماید.

 در جستجوها و بررسیهای انجام شده بین مقالات داخلی و خارجی اثری از نصب خازن در شبکه فشار ضعیف بدست نیامده است. مقالات خازنگذاری در شبکه توزیع عمدتاً مربوط به بخش فشار متوسط شبکه می باشد و در بخش فشار ضعیف تاکنون خازنگذاری انجام نشده است. در کشورهای پیشرفته سازندگان دستگاهها و وسایل یا بار راکتیو مجبور به نصب خازن روی دستگاهها و جبران توان راکتیو تولیدات خود در محل مصرف می باشند و مابقی توان راکتیو جاری روی شبکه در بخش فشار متوسط یا ایستگاههای فوق توزیع جبران می شود.

 جهت خازنگذاری در شبکه فشار ضعیف بررسی و مطالعه روشهای خازنگذاری در شبکه فشار متوسط می تواند مفید باشد. در برخی از این روشها محدودیتهایی جهت شبکه، بارها و خازنها درنظر گرفته شده است و این اجزاء مسئله در قالب فرمولهای ریاضی محدود شده تا با استفاده از روشهای ریاضی تابع هدف تشکیل شده بهینه گردد. از جمله اینکه گاهاً شبکه به صورت یک خط مستقیم بدون انشعاب با بار و سطح مقطع یکنواخت فرض شده است [1و6]. در مرجع [2] بار کلیه شاخه های فرعی روی شاخه های فرعی روی شاخه اصلی درنظر گرفته شده است. در بیشتر روشهای خازنگذاری مقدار خازن بهینه از راه محاسبه بدست می آید [1- 4 و 6 و 4] و چنانچه نیاز باشد این روشها عملی شوند ناچاراً براساس خازنهای موجود در بازار مقدار خازن نزدیک به مقدار محاسبه شده انتخاب می گردد که قطعاً این مقدار بهینه نمی باشد. در برخی از روشهای خازنگذاری در شبکه فشار متوسط اجزاء مسئله به صورت واقعی و بدون فرض مدل شده [4] و ناچاراً جهت بهینه یابی از روشهای نوین از جمله الگوریتم ژنتیک و یا منطق فازی و غیره استفاده شده است.

 2 ) خازنگذاری در شبکه فشار ضعیف :  

 در این مقاله که نتیجه تحقیقات قریب به دو سال روی انواع فیدرهای فشار ضعیف در نقاط مختلف استان خراسان است سعی شده است با ارائه مدلهای واقعی و عملی از اجزاء مسئله، و استفاده از راه حل کاملاً عملی روش مناسبی جهت نصب بهینه خازن ثابت در شبکه فشار ضعیف ارائه گردد.

 2 1 مدل خازنها :

 اندازه خازنهای مورد استفاده در این برنامه مشخص است و جهت موارد خاص می توان به جای 5/12 کیلووار از ظرفیتهای دیگر استفاده نمود. بنابراین مسئله بهینه یابی فقط باید تعداد خازنهای موردنیاز هر فیدر فشار ضعیف و محل نصب آنها بهینه گردند.

 2 2 مدل شبکه :

 از آنجا که شبکه فشار ضعیف با شبکه فشار متوسط واصولاً تفاوتهایی از قبیل پنج سیمه بودن، تک فاز بودن برخی شاخه ها، داشتن سطح مقطع غیریکنواخت تر و غیره دارد خازنگذاری در این شبکه نیز باید ویژگیهای خود را داشته باشد.

 


دانلود با لینک مستقیم


تحقیق در مورد خازن پذاری بهینه در شبکه فشار ضعیف

بهینه سازی تعداد پاره سازه ها در تحلیل اجزای محدود

اختصاصی از فی فوو بهینه سازی تعداد پاره سازه ها در تحلیل اجزای محدود دانلود با لینک مستقیم و پر سرعت .

بهینه سازی تعداد پاره سازه ها در تحلیل اجزای محدود


بهینه سازی تعداد پاره سازه ها در تحلیل اجزای محدود

• مقاله با عنوان: بهینه سازی تعداد پاره سازه ها در تحلیل اجزای محدود  

• نویسندگان: حمید مسلمی ، محمدهادی کدخدایی  

• محل انتشار: دهمین کنگره بین المللی مهندسی عمران - دانشگاه تبریز - 15 تا 17 اردیبهشت 94  

• فرمت فایل: PDF و شامل 8 صفحه می باشد.

 

 

 

چکیــــده:

علی رغم پیشرفت روزافزون سرعت پردازشگرهای کامپیوتری، تحلیل عددی سازه های پیچیده به خصوص در حالت غیرخطی امری زمان بر و در برخی موارد ناشدنی می باشد. از این رو تکنیک های کاهش هزینه محاسباتی تحلیل عددی سازه ها مورد توجه ویژه ای قرار گرفته اند. یکی از این تکنیک ها تقسیم سازه به تعدادی پاره سازه در روش اجزای محدود می باشد. در حالت حدی از یک سو می توان کل سازه را یک پاره سازه فرض نمود و در حالت حدی دیگر از آن سو می توان هر المان را یک پاره سازه در نظر گرفت. در هیچکدام از این دو حالت تکنیک پاره سازه ها کاهشی در هزینه محاسباتی نسبت به روش اجزای محدود کلاسیک ندارد. ولی در حالت بینابین با انتخاب تعداد مناسب پاره سازه، می توان تا حد ممکن این هزینه را کاهش داد. در این مقاله به بررسی نحوه یافتن تعداد بهینه پاره سازه ها برای حداقل ساختن هزینه محاسباتی در مسائل دوبعدی پرداخته شده است.

________________________________

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

** درخواست مقالات کنفرانس‌ها و همایش‌ها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **


دانلود با لینک مستقیم


بهینه سازی تعداد پاره سازه ها در تحلیل اجزای محدود

دانلود تحقیق پروژه سمند بهینه

اختصاصی از فی فوو دانلود تحقیق پروژه سمند بهینه دانلود با لینک مستقیم و پر سرعت .

 تحقیق پروژه سمند بهینه در 15 صفحه با فرمت ورد شامل بخش های زیر می باشد:

بخش اول : کلیات پروژه

1-1  معرفی پروژه و دامنه آن

1-2  اهداف و دلایل اجرای پروژه

1-3 مدت زمان اجرای پروژه

 

2  بخش دوم : مطالعه بازار

2-1  نتایج بدست آمده از مشتری میانی و نهایی

2-2  جمع بندی مطالعات بازار

 

  • بخش سوم:مشخصات فنی پروژه

3-1    مشخصات فنی و عمومی

    3-2    ظرفیت مورد نظر

    3-3  مکان اجرای پروژه

 

4  بخش چهارم : برآورد نیروی انسانی

4-1 برآورد نیروی انسانی

4-2 ساختار سازمانی پروژه

 

 7  پیوست ها

 پیوست 1-لیست کامل تغییرات سمند بهینه

 

 

 

 

 

1    بخش اول : کلیات پروژه

 

1-1  معرفی پروژه و دامنه آن

خودرو سمند به عنوان یک محصول استراتژیک و ملی در بازار داخلی و خارجی مورد توجه فراوان قرار داشته و از این رو روند بهبود و ارتقا و تنوع در آن، همواره مورد انتظار بوده است.

سمند بهینه مدل بهبود یافته خودروی سمند می باشد که در همان بخش قیمتی و  کلاس ابعادی سمند (بخش M5 و کلاس D ) ارائه می گردد و در نظر است  با استفاده از راهکارهای مختلف نسبت به اصلاح و ارتقاء سیستمهای مختلف خودرو سمند با هدف دستیابی به نمرات کیفی قابل قبول اقدام گردد.

 

 

1- 2   اهداف و دلایل اجرای پروژه

 با توجه به تعاریف کلی شرکت در رابطه با:

 1- حفظ و گسترش سهم ایران خودرو در بخش M5

2- حفظ قدرت رقابت پذیری خودروی سمند در بازار

3- بهبود مستمر محصولات ایران خودرو 

 

پروژه سمند بهینه به منظور دستیابی به اهداف زیر تعریف گردیده است:

-افزایش کیفیت خودرو و رفع ایرادات سمند

-افزایش ایمنی و امنیت خودروی  سمند

-به روزآوری و استفاده از فن آوریهای جدید

-کاهش هزینه مشروط بر حفظ یا افزایش کیفیت

-کاهش وزن خودرو

-ایجاد تغییرات ظاهری و در نتیجه تنوع در محصول

-افزایش سهم بازار در محصولات کلاس E  وD

-پاسخگویی به نیازهای صادراتی

1- 3   مدت زمان اجرای پروژه

بر اساس بررسیهای به عمل آمده امکان انجام تغییرات اشاره شده در این گزارش جهت ساخت سمند بهینه طی مدت 16 ماه ( از تاریخ1/03/86 الی 30/06/87) وجود دارد .

 

 2  بخش دوم : مطالعه بازار

 

2-1  نتایج بدست آمده از مشتری میانی و نهایی

به منظور حفظ وتوسعه سهم ایران خودرو در بازار داخلی و حضور در بازارهای خارجی مطالعات لازم صورت گرفته که در اینجا به نتایج کلی آن اشاره می گردد:

هدف اصلی پروژه بهبود کیفیت خودرو و رفع ایرادات و نواقص مطروحه سمند  می باشد لذا با عنایت به این هدف ,ایرادات مطرح شده از منابع مختلف (کیفیت –مشتری – صادرات ) مورد بررسی قرار گرفت .

در بخش کیفی ,هدف کاهش نمره منفی خودروی سمند بر گرفته از آدیت طرح تفضیلی سازمان بازرسی وزارت صنایع (ایدرو ) می باشد با توجه به فعالیتهای در نظر گرفته شده کاهش 50 نمره منفی سمند پیش بینی می گردد....

 

 


دانلود با لینک مستقیم


دانلود تحقیق پروژه سمند بهینه