فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله انرژی الکتریکی

اختصاصی از فی فوو مقاله انرژی الکتریکی دانلود با لینک مستقیم و پر سرعت .

مقاله انرژی الکتریکی


مقاله انرژی الکتریکی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:3

 

فهرست

 

نرژی الکتریکی

مقدمه

تئوری و تعاریفی از ترانسفورماتورها

انواع ترانسفورماتورها

 

 

مقدمه

 

قسمت اعظم انرژی الکتریکی مورد نیاز انسان در تمام کشورهای جهان ، توسط مراکز تولید مانند نیروگاههای بخاری ، آبی و هسته‌ای تولید می‌شود. این مراکز دارای توربینها و آلترناتیوهای سه فاز هستند و ولتاژی که بوسیله ژنراتورها تولید می‌شود، باید تا میزانی که مقرون به صرفه باشد جهت انتقال بالا برده شود. گاهی چندین مرکز تولید بوسیله شبکه‌ای به هم مرتبط می‌شوند تا انرژی الکتریکی مورد نیاز را بطور مداوم و به مقدار کافی در شهرها و نواحی مختلف توزیع کنند.

 


دانلود با لینک مستقیم


مقاله انرژی الکتریکی

دانلودمقاله سیستمهای بازیافت مواد و انرژی

اختصاصی از فی فوو دانلودمقاله سیستمهای بازیافت مواد و انرژی دانلود با لینک مستقیم و پر سرعت .

 

 


مقدمه
برخی از مواد موجود در مواد زاید جامد شهری و صنعتی برای بازیافت و استفاده مجدد مناسبند. با توجه به این نکته می‌توان پی برد که کاغذ ، مقوا ، پلاستیک ، شیشه ، فلزات غیر آهنی و فلزات آهن مناسبترین مواد برای بازیابی‌اند و جز پلاستیکها بقیه مواد مذکور معمولا بازیابی می‌شوند.
مشخصات مواد
کاغذ ، مقوا ، پلاستیک ، شیشه ، فلزات آهنی و غیرآهنی از جمله مواد قابل بازیافت اصلی در مواد زاید جامد شهری هستند. در هر موقعیتی تعمیم برای بازیابی هر یک از این مواد معمولا با تکیه بر ارزیابی اقتصادی و ملاحظات محلی صورت می‌گیرد. در ارزیابی اقتصادی بازیابی مواد مشخصات مواد حائز اهمیت است.
سیستم‌های فرآیند و بازیافت
به منظور جداسازی اجزای دلخواه و انجام فرآیند بر مواد قابل اشتعال ، برای بازیابی مواد یا انرژی لازم است دیاگرامهای عملیاتی ترسیم شود. مواد سبک قابل احتراق معمولا به نام سوخت حاصل از دور ریز خوانده می‌شوند.
طراحی و ترسیم سیستم
طراحی و ترسیم تاسیسات فیزیکی که دیاگرام واحد فرآیند را تشکیل می‌دهند، زمینه اصلی اجزا عملکرد موفقیت آمیز چنین سیستم‌ها هستند. عوامل مهمی که در طراحی و ترسیم چنین سیستم‌هایی باید مورد توجه قرار گیرند عبارتند از:

 

1. بازده و کارایی فرآیند
2. اطمینان و انعطاف پذیری
3. سادگی و عملکرد اقتصادی
4. خوشایند بودن وضعیت ظاهری
5. کنترل‌های زیست محیطی
بازیابی مواد حاصل از تبدیل بیولوژیکی مواد زاید جامد عبارتند از: کود ترکیبی ، متان ، پروتئینها و الکلهای مختلف و انواع مختلفی از ترکیبات واسطه‌ای عالی. تهیه کود ترکیبی و هضم بی‌هوازی دو فرآیندی هستند که بیش از همه فرآیندها توسعه یافته‌اند.

 

تولید کود ترکیبی (تبدیل هوازی)
اگر مواد آلی به استثنای پلاستیک ، لاستیک و چرم از مواد زاید جامد شهری جدا شده و در معرض تجزیه باکتریایی قرار گیرند، محصول نهایی به جا مانده پس از فعالیت باکتریایی هاضم و غیرهاضم ، کود ترکیبی یا هوموس خوانده می‌شود. کل فرآیند که در برگیرنده جداسازی و تبدیل باکتریایی مواد زاید جامد آلی است به نام تولید کود ترکیبی شناخته می‌شود. تجزیه مواد زاید جامد آلی با وجود اکسیژن و یا نبودن آن ممکن است به دو صورت هوازی یا بی‌هوازی صورت گیرد.
مراحل عملیات تهیه کود ترکیبی
1. تهیه مواد زاید جامد
2. تجزیه مواد زاید جامد
3. تهیه محصولات و بازیابی
• مرحله سوم شامل آسیاب کردن ، اختلاط با مواد افزودنی متعدد ، دانه بندی ، بسته بندی ، ذخیره سازی ، محل و در برخی از مواقع عرضه مستقیمبه بازار است.
هضم بی‌هوازی
هضم بی‌هوازی یا تخمیر بی‌هوازی فرآیندی است که برای تولید متان از مواد زاید بکار می‌رود. در اغلب فرآیندها که گاز متان از مواد زاید جامد در اثر هضم بی‌هوازی تولید می‌شود.
مراحل هضم هوازی
• اولین مرحله عبارت است از آماده سازی جز آلی مواد زاید جامد برای هضم بی‌هوازی و این مرحله معمولا شامل مراحل دریافت ، تنظیم ، جداسازی و کاهش اندازه است.
• مرحله دوم عبارت است از افزایش رطوبت و مواد مغذی ، بهم زدن ، تنظیم PH تا حدود 7/6 ، حرارت دادن دوغاب تا دمای بین 228 تا 333k (55 تا 60Cْ) و هضم بی‌هوازی در یک راکتور با جریان پیوسته که محتویات آن به خوبی برای مدت زمانی بین 5 الی 10 روز مخلوط می‌شوند.
• مرحله سوم عبارتست از جمع آوری ، ذخیره سازی و در صورت نیاز جدا کردن اجزای گاز متصاعد شده در حین فرآیند هضم ، دفع مواد زاید هضم شده عملی است که الزاما باید صورت بگیرد.
بازیابی محصولات تبدیل گرمایی
محصولات تبدیلی گرمایی که از مواد زاید جامد بدست می‌آیند، عبارتند از حرارت ، گازها ، تعداد متنوعی از روغنها و مقداری از ترکیبات آلی مربوط به یکدیگر.

 

احتراق مواد زاید: عناصر اصلی مواد زاید جامد عبارتند از: کربن ، هیدروژن ، اکسیژن ، نیتروژن و گوگرد در شرایط مطلوب در هنگام سوختن مواد زاید جامد محصولان نهایی گازی شامل) CO2 دی اکسید کربن( )H2Oآب) N2 (نیتروژن) و) SO2 (دی اکسید سولفور) می‌شوند.
خاکسترسازی همراه با بازیافت گرما
گرمای موجود در گازها حاصل از خاکسترسازی جامد را می‌توان در اثر تبدیل به بخار بازیابی کرد. گرمای اندکی که در گازهای پس از بازیافت گرما باقی می‌ماند را می‌توان آن برای پیشگرم کردن هوای احتراق آب جبرانی دیگ بخار یا سوخت مواد زاید جامد مورد مصرف قرار داد.
خاکسترسازهای بزرگ موجود
خاکسترسازهای بزرگ موجود به منظور استخراج گرما از گازهای احتراق بدون وارد کردن مقادیر اضافی هوا یا رطوبت می‌توان از دیگهای بخاری که سوخت آنها را مواد زاید تشکیل می‌دهند، استفاده کرد. در عمل خاکسترساز پیش تخلیه به اتمسفر (از دامنه دمایی 1250 تا 1375k (1800 تا ْ2000f ( تا دامنه دمایی 500 تا 800k (600 تا ْ1000f خنک می‌شوند. قطع نظر از تولید بخار ، استفاده از سیستم دیگ بخار در کاهش حجم گازهای تحت فرآیند در تجهیزات کنترل آلودگی هوا کارساز است.
خاکسترسازهایی که آب در دیواره آنها جریان دارد.
در این خاکسترسازها ، دیواره‌های داخلی محفظه احتراق دارای لوله‌های دیگ بخار است که بطور عمودی قرار گرفته‌اند و در قسمتهای پیوسته بر یکدیگر جوش خورده‌اند. هنگامی که به جای مواد نسوز از دیواره‌های دارای لوله‌های جریان آب استفاده می‌شود. این سیستم نه تنها برای باز یافت بخار کار آمد است بلکه در کنترل دمای کوره بدون وارد ساختن هوای اضافی نیز به مقدار زیادی موثر است.
استفاده از سوختهای حاصل از مواد زاید
این قبیل سوختها که معمولا به شکل پودر هستند در دیگهای باز صنعتی در حال حاضر با استفاده از زغال سنگ یا نفت برای تولید انرژی استفاده می‌شوند، بطور مستقیم قابل سوختن می‌باشند. سوختهای حاصل از مواد زاید جامد همراه با زغال سنگ یا نفت نیز قابل سوختن هستند. با استفاده از ماشین‌های مکعب‌ساز کشاورزی می‌توان سوختهای تراکم حاصل از مواد زاید جامد تولید کرد. سوختهای مکعبی شکل برای استفاده در تعدادی از فرآیندهای تبدیلی خاکسترسازی و یا تبدیل به گاز و پیرولیز مناسبند.
تبدیل به گاز
فرایند تبدیل به گاز عبارت است از احتراق جزیی از سوخت کربنی به منظور تولید یک گاز سوختی قابل احتراق که مقدار منو اکسید کربن و هیدروژن در آن زیاد است. دستگاه تبدیل کننده گاز اساسا یک خاکستر ساز است که تحت شرایط احیا کننده عمل می‌نماید. گرمای لازم برای ادامه فرایند از واکنشهای گرمازا بدست می‌آید در حالیکه اجزای قابل احتراق گاز دارای انرژی کم عمدتا از واکنشهای گرماگیر بدست می‌آیند. وقتی که یک دستگاه تبدیل کننده گاز در فشار اتمسفر با استفاده از مواد به عنوان اکسید کننده عمل می‌کند، محصولات نهایی فرایند به گاز عموما گازهای کم انرژی هستند که از نظر حجمی حاوی CO2%100 و CO20% و H215% و CH42% می باشند که مابقی آن را گاز N<SUB<2< sub> و پودر غنی از کربن تشکیل می‌دهد.
تجزیه مواد به کمک حرارت (پیرولیز(
پیرولیز فرآیندی به شدت گرماگیر است به همین دلیل عبارت تقطیر مخرب نیز به صورت ترازو با پیرولیز بکار می‌رود مشکل فیزیکی مواد زاید جامد تحت پیرولیز ، می‌تواند از مواد زاید خام خرد نشده تا مواد زاید کاملا پودر شده باقی مانده پس از دو مرحله خرد کردن و مواد تغییر نماید. خواص سه جز اصلی حاصل ازپیرولیز عبارتست از:

 

جریانی از گاز که عمدتا حاوی هیدروژن ، متان ، منو کسید کربن و دی اکسید کربن و گازهای دیگر در ارتباط با خواص آلی مواد پرولیز شونده می‌باشد.
1. جزئی از قیر و یا جریان روغن که در دمای متعارف محیط مایع است و دارای ترکیباتی نظیر اسید استیک ، استون و متانل می‌باشد.
2. پودری که از کربن تقریبا خالص همراه با موادی بی‌اثر داده شده در فرآیند تشکیل شده است.

 

انرژی و منابع تجدید شونده:

 

ممیزی انرژی :
ممیزی انرژی مطالعه‎ یا پیمایشی سیستماتیک برای تعیین چگونگی مصرف انرژی در یک واحد صنعتی است که فرصتهای صرفه جویی انرژی را مشخص می‎کند. ممیزی انرژی با بهره‎گیری از روشهای مناسب ممیزی و تجهیزات مورد نیاز قادر است که اطلاعات ضروری مربوط به چگونگی، کیفیت و کمیت مصرف انرژی را در اختیار مدیریت انرژی واحد صنعتی قرار دهد. ممیزی انرژی راندمان کلی مصرف و راندمان مصرف انرژی را در سطح فرایندهای واحد مشخص می‎کند. مدیر انرژی نیز با بهره‎گیری از اطلاعات مصرف انرژی در گذشته، هدفهای مصرف را در آینده واحد تعیین می‎کند.
قسمت اصلی گزارش ممیزی حاوی پیشنهادها و فرصتهای صرفه‎جویی انرژی به همراه تحلیل فنی و اقتصادی مربوط به آنها است. علاوه بر این ممیزی انرژی، روشهای جستجوی سیستماتیک فرصتها و موقعیتهای صرفه‎جویی انرژی را نیز تعیین می‎کند.
در مرحله بعد گزارش ممیزی انرژی به پروژه‎های بهینه سازی انرژی در بخشهای مختلف واحد تبدیل می‎گردد. مدیر انرژی نیز با بکارگیری اطلاعات ممیزی و پروژه‎های بهینه سازی انرژی اولویت انجام هر یک از آنها را تعیین کند و به مدیریت ارشد جهت تأیید ارائه نماید. اطلاعات و شیوه صحیح مطالعه انرژی، فرایند تصمیم سازی را تکمیل کرده و مدیریت ارشد را قادر می‎سازد که تصمیمات درستی را برای اجرای پروژه‎های بهینه‎سازی اتخاذ کند. نهادینه کردن این فرایند در هر واحد صنعتی به صورت یک فعالیت مستمر منجر به کنترل و مدیریت مصرف انرژی بر اساس واقعیتهای موجود در کارخانه می‎شود.
ممیزی انرژی بر خلاف ممیزی مالی موقعیتهای اتلاف و پتانسیلهای صرفه جویی انرژی را مشخص می‎کند و برای آنها راه حلهای کاربردی ارائه می‎کند. از اینرو ممیزی انرژی برای صنایع "به شدت انرژی بر" نظیر صنعت سیمان به دلیل بالا بودن هزینه‎های انرژی از اهمیت بالایی برخوردار است.
در کارخانه‎های سیمان سهم بالایی از قیمت تمام شده به هزینه‎های انرژی اعم از انرژی حرارتی و الکتریکی اختصاص پیدا می‎کند. سهم بالای انرژی در قیمت تمام شده سیمان، مدیریت انرژی و ممیزی انرژی را به عنوان یک ضرورت اجتناب ناپذیر برای کارخانه‎های سیمان مبدل کرده است.
علی رغم پیشرفتهای تکنولوژیک و کاهش انرژی مصرفی برای واحد سیمان تولیدی، در حال حاضر نیز پتانسیلهای بسیار مناسبی برای کاهش انرژی مصرفی در کارخانه‎های سیمان وجود دارد. شناسایی راهکارهای بهینه سازی انرژی حرارتی و الکتریکی(به صورت توأم یا مجزا) در قالب پروژه‎های کوتاه مدت و بلند مدت یکی از نتایج انجام ممیزی انرژی در کارخانه‎های سیمان است.

 

تولید سوخت از ضایعات جامد :
برخی از کشورها وابستگی شدید به زغال سنگ، نفت و یا گاز طبیعی به منظور تولید انرژی دارند. از طرفی، منابع سوخت های فسیلی نیز رو به کاهش بوده و در نتیجه بکارگیری آنها جهت تولید انرژی الکتریکی مقرون به صرفه نخواهد بود.
این در حالی است که یکی از منابع سوخت جایگزین می‌تواند سوخت تولیدی از ضایعات جامد (RDF) باشد. سوخت تولید شده از ضایعات جامد، سوختی است که با اجرای عملیات خرد کردن و نیز فراوری ضایعات جامد شهری توسط بخار و یا اتوکلاو بدست می‌آید.
سوخت بدست آمده از ضایعات جامد، شامل مقادیر زیادی از مواد آلی موجود در زباله های شهری نظیر پلاستیک، لاستیکهای ضایعاتی و مواد آلی زیست تخریب پذیر می‌باشد. کارخانجات تولیدی چنین سوختی، معمولاً در نزدیکی محل جمع‌آوری زباله های شهری بنا می‌گردند. هر چند که طراحی و احداث این کارخانجات در محل‌های دورتر نیز امکان پذیر است.
فرایند های پیشرفته تولید سوخت از ضایعات (با بکارگیری بخار دارای دما و فشار بالا در اتوکلاو) می‌تواند تا حد زیادی از بار آلودگی های خطرناک، فلزات سنگین بکاهد تا امکان بکارگیری سوخت تولید شده در اماکن مختلف فراهم گردد.
مراحل تولید چنین سوختی شامل تمام و یا بخشی از موارد ذیل می‌باشد:
• جداسازی اولیه (که در فرایند اتوکلاو نیازی به آن نیست)
• غربال کردن و دانه بندی (به عنوان عملیات نهایی پس از فرایند اتوکلاو)
• جداسازی مغناطیسی (به عنوان عملیات نهایی پس از فرایند اتوکلاو)
• خرد کردن اجزای درشت(که در فرایند اتوکلاو نیازی به آن نیست)
• خالص سازی و پالایش نهایی

 

تصفیه خانه های آب

 

تصفیه خانه‌های آب شرب :
آب خام نیازمند طی نمودن مراحل مختلفی است تا به کیفیت مورد نظر جهت کاربری به عنوان آب آشامیدنی برسد. به عنوان مثال:
• لخته سازی
• زلال سازی
• حذف آهن و منگنز
• فیلتراسیون
• تنظیم PH
• گندزدایی
• کنترل طعم و بو
تولید آب آشامیدنی صرف نظر از منبع آب خام بکارگرفته شده (آب های جاری، آب چاه و یا آب دریا) یکی از تخصص‌های شرکت مهندسی فرایند و انرژی فران می باشد.
در هر حال، هدف نهایی از بررسی فوق، یافتن راه حلی مناسب جهت غلبه بر مشکلاتی از قبیل هزینه‌های بالای راهبری و نگهداری، عدم استفاده بهینه انرژی و مواد شیمیایی مصرفی در نهایت عدم حصول آبی با کیفیت مناسب می‌باشد.

 

 

 

 

 

تصفیه خانه‌های آب صنعتی:

در اغلب صنایع، آب نقش اصلی را در چرخه تولید ایفا می‌نماید. غالباً آب مورد استفاده می‌بایست جهت حصول مشخصات مورد نیاز سختی گیری شود. بعنوان مثال :
هدف از تصفیه آب مورد کاربرد در بویلرها و برج‌های خنک کننده عبارت است از:
• جلوگیری از بروز پدیده خوردگی در بویلر
• جلوگیری از رشد بیولوژیکی جلبک، باکتری و قارچ در سیستم
• جلوگیری از بروز پدیده رسوب گرفتگی به منظور بالا نگهداشتن ضریب انتقال حرارت.
روشها و فرایندهای متفاوتی جهت رسیدن به اهداف فوق قابل اجراست، از جمله:
• عاری سازی یونی
• سختی گیری و حذف کربنات
• هوا زدایی
• حذف قلیا
• حذف فلزات سنگین
• خنثی سازی
• گند زدایی

 

 

 

 

 


آشنایی با فنون بکارگرفته شده :
تصفیه فیزیکی شیمیایی آب...
فیلتراسیون...
حذف بو و رنگ ...
تکنولوژی غشایی ...
تبادل یونی...
گندزدایی ...
تصفیه فیزیکی و شیمیایی آب :

حتی اگر تصفیه آب شامل مراحل متعددی باشد، فرایندهای فوق یکی از بخشهای اصلی قلمداد می‌گردند. به عنوان مثال در قالب فرایند پیش تصفیه و یا تصفیه نهایی پس از فرایند بیولوژیکی.
در این بخش، مرحله اول شامل حذف اجزایی است که موجب مشکل در سایر عملیات تصفیه می‌گردند. این مرحله شامل آشغال گیری، انعقاد، لخته سازی و خنثی سازی، ته نشینی، حذف روغن وچربی و ایجاد محیط بافری می‌باشد.
تزریق واکنش گرهایی با ماهیت معدنی (به عنوان منعقد کننده) نظیر فریک کلراید، پلی آلومینیم کلراید، آهک، آلومینیم سولفات جهت حذف فسفات، روی، منگنز، فلزات سنگین و حتی برخی از مواد آلی درون آب انجام می‌گیرد.
تزریق پلی الکترولیت نیز جهت افزایش راندمان حذف مواد فوق ممکن است صورت گیرد.
جهت حذف کامل مواد معلق باقی مانده در آب استفاده از فیلتر شنی و یا حتی بکارگیری فیلتراسیون غشایی ضروری خواهد بود.

 

فیلتراسیون
________________________________________
تمامی گونه‌های آب خام صرف نظر از منبع تأمین آن، دارای غلظت‌های متفاوتی از ناخالصی به شکل ذرات معلق می‌باشند، که نوع و مقدار مواد، تابع شرایط محیطی و نوع منبع تأمین آب خام می‌باشد. وجود چنین موادی موجب عدم قابلیت بکارگیری آب خام در مقاصد شهری و صنعتی می‌گردد.
در اغلب تصفیه خانه‌های آب از فیلتر شنی ثقلی استفاده می‌شود که در کاربردهای تجاری می‌توان از مواد منعقد کننده به همراه فیلترهای تحت فشار نیز استفاده نمود.
در ساخت فیلترهای تحت فشار، مخزن تحت فشار توسط ماسه با سایزهای متفاوت پر می‌شود. در داخل مخزن فیلتر، نازل‌های توزیع کننده جریان یکنواخت و سیستم جمع آوری آب فیلتر شده تعبیه می‌گردد. معمولاً از شن و ذرات درشت تر به عنوان لایه تحتانی و از ذرات با سایز کمتر در لایه‌های فوقانی بستر استفاده می‌شود. در خلال عبور آب خام، ذرات معلق موجود در آن در لایه‌های بستر فیلتر شنی به دام افتاده و در نهایت آب زلال و تقریباً عاری از مواد معلق بدست می‌آید.
جهت جلوگیری از گرفتگی بستر و افزایش افت فشار جریان درون بستر که ناشی از تجمع ذرات معلق در لایه‌های بستر می‌باشد، از فرایند شستشوی معکوس استفاده می گردد که زمان و رویه این عملیات، تابعی از نوع فیلتر، میزان مواد معلق درون آب خام و ماهیت مواد منعقد کننده بکارگرفته شده خواهد بود.
از جمله کاربردهای فیلتر شنی تحت فشار و فیلترهای ثقلی می‌توان به کاربرد آنها در زلال سازی اب خام، حذف ذرات معلق موجود در آب برج های خنک کننده اشاره نمود.
حذف رنگ، طعم و بوی نامطبوع در فرایند تصفیه آب:
همانند فیلترهای شنی تحت فشار، فیلترهای کربن فعال جهت حذف رنگ و بوی نامطبوع آب خام بکارگرفته می‌شوند. کربن فعال مورد کاربرد بصورت دانه‌ای بوده و از حرارت دادن مواد طبیعی حاوی مقادیر زیاد کربن مانند زغال، مواد سلولزی، پوست نارگیل و یا پوست پسته در غیاب هوا تا دمایی در حدود 700 درجه سانتیگراد و متعاقب آن جهت افزایش تخلخل و فعال سازی کربن از عملیات اکسیداسیون در دمایی بین 800 تا 1000 درجه سانتیگراد توسط گازهای اکسید کننده ای نظیر بخار آب و یا دی اکسیدکربن استفاده می‌شود. لازم به یادآوری است کاربرد اکسیژن جهت اکسیداسیون به دلیل واکنش بسیار تند و غیر قابل کنترل با کربن امکان پذیر نمی‌باشد.

 

 

 

 

 

همانطور که اشاره گردید کربن فعال جهت حذف کلر باقیمانده در آب، کاهش و حذف مواد آلی محلول و حذف گاز رادن در آب بکار می‌رود.
تکنولوژی غشایی در تصفیه آب و فاضلاب

امروزه تکنولوژی غشایی به واسطه کم بودن اثر مخرب آن بر محیط زیست و نیز کم بودن هزینه‌های نگهداری و بهره‌برداری، در مقیاس بسیار وسیع در صنایع تصفیه آب و فاضلاب بکارگرفته می‌شود، که نتیجه آن حذف اغلب آلودگیهای محلول، معلق و بیولوژیکی در آب و فاضلاب می‌باشد.
اساس تکنولوژی اسمز معکوس بر فرایند نفوذ یا تراوش آب از غشای نیمه تراوا می‌باشد، که این غشا‌های نیمه تراوا فقط قابلیت عبور دادن آب خالص را از یک سمت به سمت دیگر دارند و در نتیجه باکتریها، نمکهای محلول و مواد آلی و معدنی موجود در آب بدلیل عدم توانایی در عبور از غشای فوق، از آب خالص جدا می‌گردند. راندمان حذف مواد خارجی در سیستم های اسمزمعکوس می‌تواند تا 5/99 درصد باشد.
سیستم اسمز معکوس تنها تکنولوژی است که قابلیت جداسازی انواع مواد خارجی محلول و معلق را دارد، که نتیجه آن حصول آبی با کیفیت مناسب جهت شرب و مصارف صنعتی می‌باشد.
منبع آب خام جهت تصفیه با روش اسمزمعکوس می‌تواند، آب چاه، چشمه، رودخانه و یا آب دریا باشد.

 

 

 

 

 

 

 

فیلتراسیون غشایی (میکروفیلتراسیون، اولتراسیون و نانوفیلتراسیون):

مزیت کاربرد تکنولوژی فیلتراسیون غشایی مانند میکروفیلتراسیون (با قابلیت جداسازی ذرات با سایز 1/0 تا 1میکرون)، اولترا فیلتراسیون (با قابلیت جداسازی ذرات با سایز 01/0 تا 1/0 میکرون) نسبت به سایر روشهای متعارف فیلتراسیون، کیفیت بالای جریان خروجی، مصرف بهینه انرژی ، اشغال فضای بسیار کم و سادگی عملیات بهره‌برداری و نگهداری آن است.
در فیلتراسیون غشایی جریان حاوی مواد معلق با قرار گرفتن در کنار غشای نیمه تراوا به دو جریان آب خالص (که بصورت انتخابی از غشا عبور می‌نماید) و یک جریان آب آلوده دفعی (که حاوی مواد معلق تغلیظ شده می‌باشد) تقسیم می‌شود. با توجه به مورد کاربری سیستم فوق، جریان غلیظ و جریان عاری از مواد معلق می‌توانند مورد کاربری مجدد واقع شده یا دفع گردند.
تکنولوژی نانو فیلتراسیون (با قابلیت حذف ذرات با سایز 001/0 تا 01/0 میکرون) و اسمزمعکوس (با قابلیت حذف ذرات با سایز 0001/0 تا 001/0 میکرون) قابلیت حذف نمکهای محلول و یونهای خارجی موجود در آب را نیز داراست که نسبت به سایر فرایندهای خالص سازی مانند تکنولوژی تبخیری هم از نظر راندمان و هم از نظر اقتصادی برتری بیشتری دارد.
در فرایند اسمزمعکوس، مواد معدنی محلول و سیلیس نیز از آب حذف می‌گردند. قابلیت تصفیه و شیرین سازی آب دریا و سایر آبهای شور جهت شرب و حتی مصارف صنعتی، آن هم بصورت کاملاً اقتصادی از مزایای مهم تکنولوژی اسمزمعکوس می‌باشد.

 

 

 

دامنه کاربرد تکنولوژی میکروفیلتراسیون و اولترا فیلتراسیون:
• حذف چربی و روغن
• بازیافت ذرات فلزی
• تصفیه فاضلاب صنایع فولاد
• تصفیه نهایی پس از فرایند لجن فعال جهت بازیابی و مصرف مجدد فاضلاب تصفیه شده
• حذف آلودگیهای غیر سمی و قابل تجزیه نظیر پروتئین‌ها و سایر ماکروملکول‌های آلی، رنگها و پوشش‌های صنعتی با جرم ملکولی بالا از آب و یا فاضلاب
• جداسازی فازی امولسیون‌های آب و روغن.
• جداسازی فلزات سنگین پس از فرایند تشکیل کمپلکس و ترسیب
• شیرین سازی آب (حذف نمک)
• جداسازی نهایی مواد سمی
• حذف مواد تجزیه پذیر در فاضلاب در صورتی که انجام فرایند بیولوژیکی ممکن نباشد.

 

تکنولوژی تبادل یونی

فرایند تبادل یونی یکی از اشکال پدیده جذب سطحی است، که در آن فاز سیال در تماس با فاز جامد جاذب قرار می‌گیرد. طی این تماس برخی از اجزای موجود در فاز سیال جذب فاز جامد شده و از سیال جدا می‌گردند. فرایند تبادل یونی فرایندی برگشت پذیر است که طی آن یونهای خارجی موجود در آب جذب گروههای عاملی قرار گرفته بر روی شبکه پلیمری (فاز جامد) می‌گردند و بدین ترتیب آب عاری از هرگونه ناخالصی یونی حاصل می‌گردد.
پس از اشباع شدن گروههای عاملی، سیستم تحت عملیات بازیابی و شستشوی شیمیایی قرار گرفته و مجدداً مورد استفاده قرار می‌گیرد.

 


دامنه کاربرد تکنولوژی تبادل یونی عبارت است از:
• تولید آب بدون یون (Demineralization)
• حذف سختی آب
• حذف کاتیونهای خارجی از آب
• حذف قلیائیت
• بازیابی مجدد آب در صنایع فلزی
• حذف نیترات و سولفات
• بازیابی و یا جداسازی مواد دارویی
• بازیابی فلزات با ارزش در صنایع فلزی
گند زدایی
یافتن روش مناسب و صحیح گندزدایی جهت پالایش آب و فاضلاب با محدوده گسترده‌ای از آلودگی‌ها امری بسیار حساس و کلیدی می‌باشد. اصولاً اکثر صنایع فرایندی، سیستم گندزدایی خود را بر مبنای عواملی چون ایمنی، حمل آسان، سادگی بهره‌برداری، طول عمر تجهیزات، میزان ضایعات تولیدی و هزینه تجهیزات مورد نیاز، انتخاب می‌نمایند. لذا می‌بایست در این خصوص از مشاورین ورزیده ، با توجه به شرایط خاص حاکم بر هر صنعت فرایندی بهره‌گرفت.
شرکت مهندسی فرایند و انرژی فران توانایی ارایه هر گونه خدمات مهندسی و اجرایی سیستم‌های گندزدایی با بکارگیری تکنولوژیهای مختلف از جمله استفاده از گاز ازن، اشعه ماورای بنفش (UV) و سیستم کلرزنی مرسوم را در کاربردهای تصفیه آب و فاضلاب شهری و صنعتی دارد.
پکیج های پیش ساخته تصفیه فاضلاب:

 

پکیج‌های تصفیه فاضلاب، واحدهای پیش ساخته‌ای هستند که جهت تصفیه فاضلاب تولیدی اجتماعات کوچک یا واحدهای صنعتی مورد استفاده قرار می‌گیرند.

 

هوادهی گسترده عمقی

 

روش هوادهی گسترده، فرایند بهینه شده لجن فعال متعارف کاربردی در تصفیه خانه های بزرگ می باشد که در آن به واسطه تامین اکسیژن کافی محلول توسط هوادهی عمقی، امکان فرایند بیولوژیکی توسط باکتریها فراهم شده و در نتیجه مواد آلی قابل تجزیه بصورت زیستی، از فاضلاب حذف می گردند. در این روش هوای فشرده تولیدی توسط بلوئر و نازل‌های موجود در مخزن، درون فاضلاب حل شده و علاوه بر تامین اکسیژن مورد نیاز، موجب اختلاط سیستم و در نتیجه در دسترس قرار گرفتن مواد مغذی برای باکتریهای معلق می‌گردد.
در این روش فاضلاب خام ورودی پس از عبور از آشغالگیر و جداسازی ذرات جامد درشت(در صورت نیاز) وارد مخزن همگن سازی می‌گردند. وظیفه مخزن فوق جلوگیری و از بین بردن شوک‌های کمی و کیفی فاضلاب ورودی به سیستم می‌باشد.
پس از این مرحله فاضلاب به صورت یکنواخت وارد حوضچه هوادهی شده و به مدت 24 ساعت هوادهی می‌گردد. سپس مخلوط فاضلاب به همراه توده باکتریایی تولید شده به مخزن ته نشینی هدایت گردیده و در آن مواد معلق بصورت لجن از کف مخزن جدا می گردند. فاضلاب تصفیه شده و زلال حاصل از ته نشینی از طریق سر ریز به مخزن گندزدایی هدایت گردیده و توسط فرایند کلرزنی و یا تابش اشعه UV گندزدایی می گردد.
جهت حفظ توده زنده باکتریایی و جلوگیری از شستشو و حذف این توده از محیط بیولوژیکی، مقداری از لجن ته نشین شده در زلال ساز توسط پمپ به مخزن هوادهی برگشت داده می شود و اضافه آن به مخزن هاضم لجن هدایت می گردد. لجن موجود در هاضم به واسطه زمان ماند طولانی دچار فرایند تجزیه و هضم شده و به ماده‌ای کاملا بی اثر و بی خطر برای محیط زیست تبدیل می‌شود، که حتی می‌توان از آن به عنوان کودی مناسب و بهداشتی جهت باغبانی و کشاورزی استفاده نمود.
پکیجهای هوادهی گسترده عمقی شرکت مهندسی فرایند و انرژی فران جهت تصفیه فاضلاب‌‌های بهداشتی(و در موارد خاص صنعتی) با ظرفیت 10 تا 180 متر مکعب در روز طراحی و ساخته می شوند و عملکرد آنها از لحاظ شیمیایی و مکانیکی گارانتی می‌گردد.
________________________________________
دیسک بیولوژیکی گردان(RBC)

 

روش دیگر مورد استفاده به صورت پکیج های پیش ساخته تصفیه فاضلاب استفاده از سیستم رشد چسبیده می باشد، که در این روش میکرو ارگانیسم های موجود در فاضلاب با تشکیل لایه ای ژلاتینی شکل بر روی یک پایه جامد نظیر پرکننده های سنگی یا پلاستیکی موجود در صافی چکنده و یا دیسک های گردان در پکیج‌های RBC مواد مغذی درون فاضلاب را مصرف می نمایند.در این روش اکسیژن هوا با مکانیسم نفوذ به لایه ژلاتینی نفوذ نموده و باکتریها با مصرف مواد مغذی و نمکها، رشد نموده ودر نتیجه ضخامت لایه ژلاتینی مرتبا افزایش می یابد تا جایی که اکسیژن کافی به لایه های میانی نمی رسد. لایه های میانی با کمبود اکسیژن مواجه شده و بی هوازی می گردد. نتیجه شرایط بی هوازی، سست شدن لایه و جدایی آن از سطح به واسطه تنش برشی ناشی از جریان سیال می باشد.
لجن جدا شده به همراه فاضلاب خروجی از این بخش به واحد ته نشینی هدایت شده و از فاضلاب جدا می گردد.
از مزایای روش رشد چسبیده (RBC) نسبت به هوادهی گسترده می توان به موارد ذیل اشاره نمود :

 

 کاهش مصرف انرژی
 آلودگی صوتی کمتر به دلیل عدم استفاده از بلوئر
 قابلیت مقاومت در برابر بروز شوک های کمی و کیفی در فاضلاب ورودی
مزایای پکیج های RBC ساخت شرکت مهندسی فرایند و انرژی فران عبارتند از:
 مصرف حداقل انرژی
 عدم گرفتگی و از کارافتادگی سیستم
 کم و مقاومت بالا در برابر خوردگی ( قابلیت تولید از جنس کامپوزیت)
گفتنی است که امروزه به دلیل پیچیدگیهای راهبری و وجود قسمتهای متحرک در این روش تصفیه، استفاده از این تکنولوژی در اروپا و آمریکا بسیار محدود شده است.
________________________________________
فرایند IFAS

 

شرکت فران با بهره‎گیری از مشاوران خارجی متبحر توانایی طراحی و ساخت پکیجهای تصفیه فاضلاب با فرایند IFAS را نیز دارا می‎باشد.
سیستم IFAS (Integrated Fixed Film Activated Sludge) با هدف ترکیب مزایای روشهای بستر ثابت(Fixed Film) و لجن فعال(Activated Sludge) در تصفیه فاضلاب مورد استفاده قرار گرفته است. تصفیه فاضلاب به روش لجن فعال با راندمان بالای تصفیه و انعطاف پذیری بالا سالها است که در تصفیه‎خانه‎های فاضلاب مورد استفاده قرار می‎گیرد. از طرف دیگر فرایند بستر ثابت، پایداری و مقاومت بالایی را در مقابل شوکهای آلی و هیدرولیکی قاضلاب از خود نشان داده است. لذا بهره‎گیری از پر کننده‎های بستر ثابت در فرایند تصفیه فاضلاب به روش لجن فعال، مزایای استفاده از دو فرایند را بطور همزمان به دنبال دارد. نتایج کارکرد این سیستم نیز نشان می‎دهد که استفاده از این فرایند افزایش راندمان تصفیه فاضلاب را به دنبال دارد. به همین دلیل استفاده از سیستم IFAS معمولاً به عنوان یکی از گزینه‎های افزایش ظرفیت تصفیه‎خانه‎های فاضلاب بدون توسعه فیزیکی مطرح می‎شود.

 

________________________________________
فرایند Attached Growth Airlift Reactor) AGAR)

 

فرایند AGAR با هدف افزایش کارایی فرایند هوادهی ابداع گردیده است. در این روش با استفاده از پرکنهای(Packing) ویژه سطح هوادهی به شدت افزایش مییابد. سیستم هوادهی عمقی به کمک توزیع کنندههای هوا موجب چرخش و حرکت پرکنها و ایجاد آشفتگی در مخزن هوادهی میشود. وجود آشفتگی در مخزن هوادهی راندمان هوادهی و مقاومت در برابر شوکهای آلی و هیذرولیکی را افزایش میدهد. این روش نیز به دلیل تغییرات اندک نسبت به سیستم هوادهی جهت افزایش ظرفیت واحدهای تصفیه فاضلاب موجود کاربرد دارد.
به طور کلی پکیج‌های تصفیه فاضلاب شرکت مهندسی فران با استفاده از فرایند AGAR دارای مزایای زیر میباشد:
 افزایش راندمان هوادهی و در نتیجه آن کاهش هزینههای عملیاتی
 کاهش حجم سیستم تصفیه فاضلاب
 امکان افزایش ظرفیت سیستم تصفیه و کاهش استفاده از مواد اولیه، در نتیجه آن کاهش سرمایه گذاری اولیه
 افزایش راندمان حذف نیتروژن بدون افزایش زمان ماند هیدرولیکی
مدیریت مواد زاید
بخاطر تقلیل مداوم ذخیره مواد خام و افزایش قیمت آنها بهمان نسبت، مدیریت مواد زائد در آینده اهمیت هر چه بیشتری خواهد یافت. با کمک تکنولوژی پیشرو شیوه های نوین و زیست محیطی برای تفکیک و بازیابی زباله باجرا درآیند.
یکی از حوزه های تخصصی شرکت Wessel Umwelttechnik اجرای ساختمان و ساخت و نصب تجهیزات تفکیک و بازیابی زباله و ارائه خدمات مهندسی طراحی پایه ای و تفصیلی برای پروژه های مکانیکی و فرآیندی است. با رعایت استانداردهای جاری ما بنا به نیاز مصرف کننده آماده ارائه راه حل در همه زمینه های صنعت محیط زیست از قبیل صنعت تفکیک زباله و یا صنعت بیولوژی – مکانیکی برای نگهداری زیست محیطی زباله و یا بازیابی آنها هستیم. و در اینجا هم با کمک تکنولوژی تخمیر امکان بازیابی انرژی موجود است.

 

مدیریت ضایعات جامد

 


دفن بهداشتی زباله:
یکی از مرسوم ترین روشهای حذف زباله از محیط ، دفن بهداشتی آن می باشد.مهمترین محصول دفن زباله تولید گازهای ناشی از فرایند بی هوازی می باشد که مهمترین آن گاز متان است.در سیستمهای دفن زباله می بایست غلظت گازهای خروجی به دقت کنترل شود تا از بروز انفجار جلوگیری گردد.
________________________________________
تولید کمپوست :
کمپوست ماده ای به شکل خاک است که نتیجه فرایند تثبیت بیولوژیکی به روش هوازی بر روی زباله های با ماهیت آلی و قابل تجزیه می باشد. از این ماده به عنوان نرم کننده و تقویت کننده خاک جهت کشاورزی استفاده می گردد. از مزایای استفاده از کمپوست در کشاورزی می توان به موارد ذیل اشاره نمود:
• بهبود ساختار خاک
• افزایش ظرفیت نگهداری رطوبت
• کاهش شسته شدن نیتروژن محلول از خاک
• افزایش ظرفیت بافری خاک
________________________________________
کارخانجات بازیافت :
فرایند بازیافت شامل بازیابی مواد با ارزش نظیر چوب ، کاغذ ، پلاستیک ، شیشه و فلزات از زباله و استفاده مجدد از آن است که با توجه به افزایش روز افزون جمعیت و نیاز بیشتر به مواد اولیه امری ضروری و اجتناب ناپذیر است.
شرکت مهندسی فرایند و انرژی فران قابلیت طراحی و اجرای طیف وسیعی از کارخانجات بازیافت زباله را دارد.
________________________________________
تصفیه شیرآبه زباله :
ضایعات جامد به هنگام دفن به واسطه بروز تغییرات بیولوژیکی ، فیزیکی و شیمیایی و نیز تجزیه هوازی و بی هوازی ترکیبات موجود در آنها تبدیل به محصولاتی به شکل گاز و مایع می گردند.
از طرفی برخی از مواد جامد موجود در زباله نیز در آب حل شده و به همراه شیرابه زباله ناشی از فرایندهای فوق ، موجب آلودگی شدید آبهای زیر زمینی می گردند.
لازم به ذکر است در برخی از موارد، آلودگی شیرابه زباله تقریبا به 20 برابر آلودگی فاضلاب بهداشتی می رسد.از اینرو مدیریت و تصفیه شیرابه زباله در محل دفن امری ضروری و اجتناب ناپذیر است.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله    86 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله سیستمهای بازیافت مواد و انرژی

دانلودمقاله منابع انرژی ، باد و توربین

اختصاصی از فی فوو دانلودمقاله منابع انرژی ، باد و توربین دانلود با لینک مستقیم و پر سرعت .

 

 

 مقدمه
گستردگی نیاز انسان به منابع انرژی همواره از مسائل اساسی مهم در زندگی بشر بوده و تلاش برای دستیابی به یک منبع تمام نشدنی انرژی از آرزوهای دیرینه انسان بوده است، از نقوش حک شده بر دیوار غارها می‌توان دریافت که بشر اولیه توانسته بود نیروی ماهیچه‌ای را به عنوان یک منبع انرژی مکانیکی به خوبی شناخته و از آن استفاده کند. ولی از آنجایی که این نیرو بسیار محدود و ضعیف است انسان همواره در تصورات خود نیرویی تمام نشدنی را جستجو می‌کرد که همواره در هر زمان و مکان در دسترس باشد. این موضوع را می‌توان در داستانهای مختلف که ساخته تخیل و ذهن بشر نخستین بوده، به خوبی دریافت، کم‌کم با پیشرفت تمدن بشری، چوب و پس از آن ذغال سنگ، نفت و گاز وارد بازار انرژی گردیده‌اند. اما به دلیل افزایش روز افزون نیاز به انرژی و محدودیست منابع فسیلی از یک سو افزایش آلودگی محیط‌زیست ناشی از سوزاندن این منابع از سوی دیگر استفاده از انرژی‌های تجدیدپذیر را روز به روز با اهمیت‌تر و گسترده‌تر نموده است. انرژی باد یکی از انواع اصلی انرژی‌های تجدیدپذیر می‌باشد که از دیرباز ذهن بشر را به خود معطوف کرده بود. به طوری که وی همواره به فکر کاربرد این انرژی در صنعت بوده است. بشر از انرژی باد برای به حرکت در آوردن قایق‌ها و کشتی‌های بادبانی و آسیابهای بادی استفاده می‌کرده است. در شرایط کنونی نیز با توجه به موارد ذکر شده و توجیه‌پذیری اقتصادی انرژی باد در مقایسه با سایر منابع انرژی‌های نو، پرداختن به انرژی باد امری حیاتی و ضروری به نظر می‌رسد. در کشور ما ایران- قابلیت‌ها و پتانسیل‌های مناسبی جهت نصب و راه‌اندازی توربین‌های برق بادی وجود دارد، که با توجه به توجیه‌پذیری آن و تحقیقات، مطالعات و سرمایه‌گذاری که در این زمینه صورت گرفته، توسعه و کاربرد این تکنولوژی چشم‌انداز روشنی را فرا روی سیاست‌گذاران بخش انرژی کشور در این زمینه قرار داده است.

فصل اول کلیاتی درباره انرژی باد
1-1- انرژی باد:
انرژی باد نظیر سایر منابع انرژی تجدیدپذیر از نظر چغرافیایی گسترده و در عین حال به صورت پراکنده و غیر متمرکز و تقریباً همیشه در دسترس می‌باشد، انرژی باد طبیعتی نوسان و متناوب داشته و ورزش دائمی ندارد. هزاران سال است که انسان با استفاده از آسیاب‌های بادی، تنها جزء بسیار کوچکی از آن را استفاده می‌کند. این انرژی تا پیش از انقلاب صنعتی به عنوان یک منبع انرژی، به طور گسترده‌ای مورد بهره‌برداری قرار می‌گرفت، ولی در دوران انقلاب صنعتی، استفاده از سوخت‌های فسیلی به دلیل ارزانی و قابلیت اطمینان بالا، جایگزین انرژی باد شد. در این دوره، توربین‌های بادی قدیمی دیگر از نظر اقتصادی قابل رقابت با بازار انرژی‌های نفت و گاز نبودند. تا اینکه در سال‌های 1973 و 1978 دو شوک بزرگ نفتی، ضربه بزرگی به اقتصاد انرژی‌های حاصل از نفت و گاز وارد آورد. به این ترتیب هزینه انرژی تولید شده به وسیله توربین‌های بادی، در مقایسه با نرخ جهانی قیمت انرژی بهبود یافت. پس از آن مراکز و موسسات تحقیقاتی و آزمایشگاهی متعددی در سراسر دنیا به بررسی تکنولوژی‌های مختلف جهت استفاده از انرژی باد به عنوان یک منبع بزرگ انرژی پرداختند. به علاوه این بحران باعث ایجاد تمایلات جدیدی در زمینه کاربرد تکنولوژی انرژی باد جهت تولید برق متصل به شبکه، پمپاژ آب و تامین انرژی الکتریکی نواحی دور افتاده شد. همچنین در سال‌های اخیر، مشکلات زیست محیطی و مسائل مربوط به تغییر آب و هوای کره زمین به علت استفاده از منابع انرژی فسیلی بر شدت این تمایلات افزوده است. از سال 1975 پیشرفت‌های شگرفی در زمینه توربین‌های بادی در جهت تولید برق بعمل آمده است. در سال 1980 اولین توربین برق بادی متصل به شبکه سراسری نصب گردید. بعد از مدت کوتاهی اولین مزرعه برق بادی چند مگاواتی در امریکا نصب و به بهره‌برداری رسید.
در پایان سال 1990 ظرفیت توربین‌های برق بادی متصل به شبکه در جهان به MW200 رسید که توانایی تولید سالانه Gwh3200 برق را داشته که تقریباً تمام این تولید مربوط به ایالت کالیفرنیا آمریکا و کشور دانمارک بود. امروزه کشورهای دیگر نظیر هلند، آلمان، بریستانیا، ایتالیا هندوستان برنامه‌های ملی ویژه‌ای را در جهت توسعه و عرضه تجاری انرژی باد آغاز کرده‌اند. در طی دهه گذشته، هزینه تولید انرژی به کمک توربین‌های بادی به طور قابل ملاحظه‌ای کاهش یافته است.
در حال حاضر توربین‌های بادی از کارآیی و قابلیت اطمینان بیشتری در مقایسه با 15 سال پیش برخوردارند. با این همه استفاده وسیع از سیستم‌های مبدل انرژی باد (W E C S) هنوز آغاز نگردیده است. در مباحث مربوط به انرژی باد، بیشتر تاکیدات بر توربین‌های بادی مولد برق جهت اتصال به شبکه است زیرا این نوع از کاربرد انرژی باد می‌تواند سهم مهمی در تامین برق مصرفی جهان داشته باشد. براساس برنامه سیاست‌های جاری (cp)، تخمین زده می‌شود که سهم انرژی باد در تامین انرژی جهان در سال 2020 تقریباً برابر با twh375 در سال خواهد بود. این میزان انرژی با استفاده از توربین‌های بادی، به ظرفیت مجموع Gwh180 تولید خواهد گردید. اما در قالب برنامه ضرورت‌های زیست محیطی (ED) سهم این انرژی در سال 2020 بالغ بر twh970 در سال خواهد بود، که با استفاده از توربین‌های بادی به ظرفیت مجموع Gw470 تولید خواهد شد. به طور کلی با استفاده از انرژی باد، به عنوان یک منبع انرژی در دراز مدت می‌توان دو برابر مصرف انرژی الکتریکی فعلی جهان را تامین کرد.
1-2 تاریخچه استفاده از انرژی باد:
بشر از زمان‌های بسیار دور به نیروی لایزال باد پی برده و سالها بود که از این انرژی برای به حرکت در آوردن کشتی‌ها و آسیاب‌های بادی بهره می‌گرفت.
طی سالیان دراز ثابت شده است که می‌توان انرژی باد را به انرژی مکانیکی و یا انرژی الکتریکی تبدیل کرد و مورد استفاده قرار داد. منابع تاریخی نشان می‌دهند که ساخت آسیاب‌ها در ایران، عراق، مصر و چین قدمت باستانی داشته و در این تمدن‌ها، از آسیاب‌های بادی برای خردکردن دانه‌ها و پمپاژ آب استفاده می‌شده است. چنانچه از شواهد تاریخی برمی‌آید، در قرن 17 قبل از میلاد، هامورابی پادشاه بابل طرحی ارائه داده بود تا بتوان به کمک آن دشت حاصلخیز بین‌النهرین را توسط انرژی حاصل از باد آبیاری نمود. آسیاب‌هایی که در آن زمان ساخته می‌شدند از نوع ماشین‌های محور قائم و شبیه به آنهایی هستند که امروزه آثار آنها در نواحی خواف و تایباد ایران به چشم می‌خورد. ایرانیان اولین کسانی بودند که در حدود 200 سال قبل از میلاد مسیح برای آردکردن غلات از آسیاب‌های بادی با محور قائم استفاده کردند. مثلاً در کتاب‌های قدیمی نوشته‌اند: دیار سیستان دیار باد و ریگ است و همان شهری است که گویند باد آنجا آسیاب‌ها را گرداند و آب از چاه کشد و باغها را سیراب کند و در همه دنیا شهری نیست که بیشتر از آنجا از باد سود ببرند. و نیز نوشته‌اند که در سیستان بادهای سخت مدام می‌وزد و به همین دلیل در آنجا آسیابهای بادی برای آرد کردن گندم ساخته‌اند. از دیگر استان‌های دارای قدمت کاربرد انرژی باد می‌توان به کرمان، اصفهان و یزد اشاره نمود که در این مکانها در زمان‌های قدیم برای خنک‌کردن منازل از کانال‌های مخصوص جهت هدایت باد استفاده می‌کردند. بعد از ایران کشورهای عربی و اروپایی پی به قدرت باد در تبدیل انرژی بردند. در قرن سوم قبل از میلاد، یک محقق مصری که در زمینه نیروی هوای فشرده تحقیق می‌کرد، آسیاب بادی چهار پره‌ای را با محور افقی طراحی نمود که از هوای فشرده آن جهت نواختن یک ارگ استفاده می‌کرد. با توجه به شواهد موجود می‌توان ادعا کرد که زادگاه ماشین‌های بادی از نوع محور قائم، حوزه شرقی مدیترانه و چین بوده است.
در قرون وسطی، آسیاب‌های بادی در ایتالیا، فرانسه، اسپانیا و پرتقال متداول گردیده و کمی بعد در بریتانیا، هلند و آلمان به کار گرفته شد. برخی از مورخان اظهار داشته‌اند که ورود این آسیاب‌ها به اروپا باید مدیون شرکت‌کنندگان در جنگ‌های صلیبی دانست که از خاورمیانه باز گشتند. آسیاب‌های بادی که در اروپا ساخته می‌شدند از نوع آسیاب‌های محور افقی و چهارپره بودند که برای آرد کردن حبوبات و گندم به کار می‌رفتند. مردم هلند آسیاب‌های بادی را از سال 1350 میلادی به منظور خشک کردن زمین‌های پست ساحلی و همچنین گرفتن روغن از دانه‌ها و بریدن چوب و تهیه پودر رنگ برای رنگرزی به کار گرفتند. آنچه که هلند را در قرن هفدهم میلادی در زمره غنی‌ترین و صنعتی‌ترین مردم اروپا قرار داد، صنعت کشتی‌سازی و ساخت آسیاب‌های بادی در آن کشور بود. توربین‌های بادی بطنی که شامل پره‌های متعدد هستند، بعدها متداول شدند، در آغاز قرن بیستم اولین توربین‌های بادی سریع و مدرن ساخته شدند. امروزه فعال‌ترین کشورها در این زمینه آلمان، اسپانیا، دانمارک، هندوستان و امریکا می‌باشند.
1-3 منشاء باد:
هنگامی که تابش خورشید به طور نامساوی به سطوح ناهموار زمین می‌رسد سبب ایجاد تغییرات در دما و فشار می‌گردد و در اثر این تغییرات باد به وجود می‌آید.
همچنین اتمسفر کره زمین به دلیل حرکت وضعی زمین، گرما را از مناطق گرمسیری به مناطق قطبی انتقال می‌دهد که این امر نیز باعث به وجود آمدن باد می‌گردد. جریانات اقیانوسی نیز به صورت مشابه عمل نموده و عامل 30% انتقال حرارت کلی در جهان می‌باشند. در مقیاس جهانی این جریانات اتمسفری به صورت یک عامل قوی جهت انتقال حرارت و گرما عمل می‌نمایند. دوران کره زمین نیز می‌تواند در برقراری الگوهای نیمه دائم جریانات سیاره‌ای در اتمسفر، انرژی مضاعف ایجاد نماید.
پس همانطور که عنوان شد باد یکی از صورت‌های مختلف انرژی حرارت خورشیدی می‌باشد که دارای یک الگوی جهانی نیمه پیوسته می‌باشد.
تغییرات سرعت باد، ساعتی، روزانه و فصلی بوده و متاثر از هوا و توپوگرافی سطح زمین می‌باشد. بیشتر منابع انرژی باد در نواحی ساحلی و کوهستانی واقع شده‌اند. 1-4 توزیع جهانی باد:
به طور کلی جریان باد در جهان دارای دو نوع توزیع می‌باشد:
الف- جریان چرخشی هادلی (Hadly)
بین عرض‌های جغرافیایی 30 درجه شمالی و 30 درجه جنوبی، هوای گرم شده در استوا به بالا صعود کرده و هوای سردتری که از شمال و جنوب می‌آید جایگزین آن می‌شود. این جریان را چرخش هادلی می‌نامند. در سطح زمین این جریان بدیع معنی است که بادهای سرد به اطراف استوا می‌وزند و از طرف دیگر هوایی که در 30 درجه شمالی و 30 درجه جنوبی به پائین می‌آید خیلی خشک است و به دلیل آنکه سرعت دوران زمین در این عرض‌های جغرافیایی به مراتب کمتر از سرعت دوران زمین در استوا است، به سمت شرق حرکت می‌کند. معمولاً در این عرض‌های جغرافیایی نواحی بیابانی مانند صحرا قرار دارند.
ب- جریان چرخشی راسبی (Rossby):
بین عرض‌های جغرافیایی 30 درجه شمالی (جنوبی) و 70 درجه شمالی (جنوبی) عمدتاً بادهای غربی در جریان هستند. این بادها تشکیل یک چرخش موجی را می‌دهند و هوای گرم سرد را به جنوب و هوای گرم را به شمال انتقال می‌دهند. این الگو را جریان راسبی می‌نامند.
1-5 اندازه‌گیری پتانسیل انرژی باد:
پتانسیل انرژی باد به عنوان یک منبع قدرت در مناطق مختلف و براساس اطلاعات موجود در مورد منابع باد قابل دسترس در هر نقطه مورد مطالعه قرار گرفته است.
پتانسیل مربوط به منابع باد به طور کلی به پنج دسته تقسیم می‌شود:
1- پتانسیل هواشناسی:
این پتانسیل بیانگر منبع انرژی باد در دسترس می‌باشد.
2- پتانسیل محلی:
این پتانسیل بر مبنای پتانسیل هواشناسی بنا شده ولی محدود به محل‌هایی است که از نظر جغرافیایی برای تولید انرژی در دسترس هستند.
3- پتانسیل فنی:
این پتانسیل با در نظر گرفتن نوع تکنولوژی در دسترس (کارایی، اندازه توربین و ....) از پتانسیل محلی محاسبه می‌شود.
4- پتانسیل اقتصادی:
این پتانسیل، استعداد بالقوه فنی است که به صورت اقتصادی و بر پایه سیاست‌های اقتصادی قابل تحقیق و اجراست.
5- پتانسیل اجرایی:
این پتانسیل با در نظر گرفتن محدودیت‌ها و عوامل تشویقی برای تعیین ظرفیت توربین‌های بادی قابل اجراء در یک محدوده زمانی خاص تعیین می‌شود. مانند تعرفه‌های تشویقی که طبق سیاست‌های دولت‌های مختلف به تولیدکنندگان انرژی برق بادی حاصل از توربین‌های بادی تخصیص داده می‌شود.
1-6 قدرت باد:
انرژی جنبشی باد همواره متناسب با توان دوم سرعت باد است هنگامی که باد به یک سطح برخورد می‌کند انرژی جنبشی از آن به فشار (نیرو) روی آن سطح تبدیل می‌شود. حاصلضرب نیروی باد در سرعت باد مساوی قدرت باد می‌شود نیروی باد متناسب با مربع سرعت باد است پس قدرت باد متناسب با مکعب سرعت باد خواهد بود. بنابراین هر چه سرعت باد بیشتر باشد قدرت آن نیز بیشتر خواهد شد. مثلاً اگر سرعت باد دو برابر شود قدرت آن هشت برابر و اگر سرعت باد سه برابر گردد قدرت باد بیست و هفت برابر خواهد شد.
روند تحولات تکنولوژی
انرژی باد در سالهای اخیر بزرگترین شرکت‌های سازنده توربین‌های بادی در جهان در حال حاضر شرکت وستاس، شرکت انرکون و شرکت NEG مایکون هستند که به ترتیب 3/23، 6/14، 4/12 درصد از بازار جهان را در اختیار دارند.
اطلاعاتی که از بررسی بازار تکنولوژی باد در آلمان به عنوان کشوری پیشتاز در صنعت باد جهان به دست آمده، بیانگر روند تحولات این صنعت در سالهای اخیر می‌باشد. و لذت و توجه به این داده‌ها در پیش‌بینی‌های مربوط به آینده این انرژی سودمند خواهد بود. میانگین ظرفیت هر توربین بادی نصب شده در آلمان تقریباً 900 کیلو وات است، اما اگر فقط توربین‌های نصب شده در نیمه اول سال 2003 را در نظر بگیریم. میانگین ظرفیت توربین‌های جدید 1560 کیلووات می‌باشد. لذا روند آشکاری از افزایش سایز توربین‌های بادی مدرن قابل مشاهده است.
در بازار توربین‌های بادی 58 مدل توربین وجود دارد که از این 58 مدل فقط 4 مدل آن بدون گیربکس هستند که روی سایزهای متوسط و بزرگ آزمایش شده‌اند. اما 54 مدل دیگر (شامل سایزهای متوسط، بزرگ و خیلی بزرگ) هنوز از گیربکس استفاده می‌کنند. بنابراین توربین‌های بدون گیربکس هنوز در ابتدای راه هستند و وضعیت آنها پس از سالها تجربه و بهره‌برداری روشن خواهد شد.
در گذشته توربین‌های بادی با یک سرعت دورانی ثابت (دور روتور) کار می‌کردند، اما مدلهای امروزی تقریباً سیستم یک ساعته را کنار گذاشته و به سیستم‌های دو سرعت یا سرعت متغیر روی آورده‌اند. از میان 58 مدل موجود در بازار، فقط 2 مدل از نوع یک سرعته هستند و 22 مدل دو سرعته و 34 مدل با سرعت متغیر دیده می‌شوند.
1-7 مزایای بهره‌برداری از انرژی باد
انرژی باد نیز مانند سایر منابع انرژی تجدیدپذیر از ویژگی‌ها و مزایای بالاتری نسبت به سایر منابع انرژی برخوردار است که اهم این مزایا عبارتند از:
1- عدم نیاز به توربین‌های بادی به سوخت، که در نتیجه از میان مصرف سوخت‌های فسیلی می‌کاهد.
2- رایگان بودن انرژی باد
3- توانایی تامین بخشی از تقاضای انرژی برق
4- کمتر بودن نسبی قیمت انرژی حاصل از باد نسبت به انرژی‌های فسیلی
5- کمتربودن هزینه‌های جاری و هزینه‌های سرمایه‌گذاری انرژی باد در بلندمدت
6- تنوع بخشیدن به منابع انرژی و ایجاد سیستم پایدار انرژی
7- قدرت مانور زیاد، جهت بهره‌برداری در هر ظرفیت و اندازه (از چند وات تا چندین مگاوات)
8- عدم نیاز به آب
9- عدم نیاز به زمین زیاد برای نصب
10- نداشتن آلودگی محیط‌زیست نسبت به سوخت‌های فسیلی.
11- افزایش قابلیت اطمینان در تولید انرژی برق
12- ایجاد اشتغال
آینده انرژی باد در ایران
بازار تامین انرژی یک بازار رقابتی است که در آن تولید برق از نیروگاه‌های بادی در مقایسه با نیروگاههای سوخت فسیلی برتری‌های جدیدی پیش روی دست‌اندکاران بخش انرژی قرار داده است. همچنین فعالیت گسترده تعدادی از کشورهای جهان برای تولید الکتریسیته از انرژی باد، سرمشقی برای دیگر کشورهایی است که در این زمینه راه‌ درازی در پیش دارند.
بسیاری از منابع اقتصادی در حال رشد، در منطقه آسیا واقع شده‌اند. اقتصاد رو به رشد کشورهای آسیایی از جمله ایران، باعث شده تا این کشورها بیش از پیش به تولید الکتریسیته احساس نیاز کرده و اقدام به تولید الکتریسیته از منابع غیر فسیلی کنند. افزون بر این موارد، نبود شبکه برق سراسری در بسیاری از بخش‌های روستایی در کشورهای آسیایی، مهر تاییدی بر سیستم‌های تولید الکتریسیته از انرژی باد زده است. در خصوص دورنمای آینده اقتصادی استفاده از انرژی باد در ایران می‌بایست گفت استفاده از این انرژی موجب صرفه‌جویی فرآورده‌های نفتی به عنوان سوخت می‌شود. صرفه‌جویی حاصله در درجه اول موجب حفظ فرآورده‌های نفتی گشته که امکان صادرات و مهمتر اینکه تبدیل آن را به مشتقات بسیار زیاد پتروشیمی با ارزش افزوده بالا فراهم می‌سازد. در درجه دوم تولید الکتریسیته از این انرژی فاقد هر گونه آلودگی زیست محیطی بوده که همین عامل کمک شایانی به حفظ طبیعت زیست بشری نموده و در نتیجه مسیر برای نیل به توسعه پایدار اقتصادی اجتماعی فراهم می‌گردد. استفاده از انرژی باد در ایران علاوه بر عمران و آبادانی موجبات ایجاد مشاغل جدید شده و بالاخره با بومی‌سازی فناوری انرژی باد اقتصاد کشور رشد بیشتری می‌یابد.
1-8 پتانسیل‌سنجی سطحی انرژی باد:
پتانسیل‌سنجی چیست؟
لفظ پتروشیمی در مباحث مربوط به انرژی از اهمیت خاصی برخوردار است، پتروشیمی در واقع به نیروی موجودی اطلاق می‌گردد که در صورت شناخت کافی و صحیح از آن می‌توان به منبع بزرگی از انرژی دست یافت، انرژی باد نیز از این قاعده مستثنی نیست.
با بررسی انرژی بالقوه باد در هر مکان راه‌حلهای تولید انرژی در ابعاد وسیع مورد بررسی قرار گرفته و اهداف مشخصی در ارتباط با بهره‌برداری از انرژی باد در آینده تعیین می‌گردد. در ارزیابی مربوط به پتانسیل‌سنجی به بررسی عواملی همچون فاکتورهای اقتصادی، آب، هوایی و نیز فاکتورهای فنی و سازمانی پرداخته می‌شود. استعداد جهانی برای تولید انرژی از باد، به طوری که به توان آن را به عنوان پتانسیل نهایی تعریف کرد، در چندین مطالعه به صورت کلی بررسی شده است، که در یک بررسی کلی، پتانسیل تئوریک انرژی باد در جهان در حدود (هر اگا ژول معادل ژول) معادل بشکه نفت خام برآورده شده که پتانسیل قابل بهره‌برداری آن حدود EJ110 معادل بشکه نفت خام بوده که از این مقدار تا اواسط سال 1382 خورشیدی (2003 سال) 33400 مگاوات معادل بشکه نفت خام در سال، ظرفیت نصب شده می‌باشد و پیش‌بینی شده است که تا سال 2020 میلادی 10 درصد از برق جهان توسط انرژی باد تولید شده و تکنولوژی فوق‌الذکر 7/1 میلیون شغل ایجاد نماید.
در ضمن لابراتوار شمال غربی اقیانوس آرام (PNL) در مطالعه‌ای که برای سازمان هواشناسی جهانی (WMC) انجام داد نقشه‌هایی برای منابع باد در سطح جهان تهیه کرد که در آن متوسط سرعت چگالی انرژی باد برای مناطق مختلف جهان ارائه شده است به طور کلی در طول سال‌های مختلف ممکن است تا 25% در متوسط سرعت باد تغییر حاصل شود. در اغلب نواحی جغرافیایی اختلافات قابل توجه فصلی در سرعت متوسط باد نیز ممکن است مشاهده شود. عمدتاً بادهای زمستانی دارای سرعت متوسط بالاتری هستند ولی در این موارد استثناء نیز وجود دارد برای نمونه در کالیفرنیا بادهای تابستانی به علت توپوگرافی محل و اثرات نسیم دریا از سایر مواقع قوی‌تر می‌باشند. از آنجایی که به سبب تغییرات فصلی، انرژی بالقوه باد جهت تولید قدرت می‌تواند به طور قابل توجهی بیشتر از آنچه که سرعت متوسط سالیانه باد ارائه می‌دهد باشد. بنابراین در محاسبه میزان برق تولیدی توربین‌های بادی در یک منطقه، می‌بایست علاوه بر سرعت متوسط باد، توزیع تناوبی سرعت باد را نیز مد نظر قرار داد چونکه به این ترتیب سرعت باد بسته به شرایط اتمسفری و زبری سطح با ارتفاع تغییر می‌نماید. افزایش سرعت باد همواره با افزایش ارتفاع و معمولاً بر حسب قانون توان با توابع لگاریتمی بیان می‌شود. تغییرات ساعتی و روزانه نیز در سرعت باد وجود دارند. این تغییرات برای شرکت‌های تولیدکننده برق از انرژی باد بسیار مهم می‌باشند. زیرا آنها مجبورند تولید نیروگاههای متعارف را طوری تنظیم کنند که بتوانند هماهنگی‌های لازم با تقاضای انرژی الکتریکی را به وجود آورند. تغییرات سرعت باد در مقیاس دقیقه و ثانیه برای سازندگان توربین‌های بادی مهم می‌باشد چون در طراحی بهینه توربین بادی موثر است.
1-9 بادسنج‌ها و انواع آنها
برای اندازه‌گیری سرعت باد در نواحی که مستعد تشخیص داده شده‌اند. لازم است که ایستگاه‌های بادسنجی نصب شود. این ایستگاه‌ها علاوه بر سرعت باد پارامترهای دیگری مانند:
• جهت باد
• دمای منطقه
• میزان رطوبت
• شدت تشعشع
• میزان فشار هوا
را اندازه‌گیری می‌کنند. برای سنجش هر کدام از عوامل فوق حس‌گر مخصوص این کمیت نصب و توسط آن، مقدار کمیت سنجیده می‌شود. به عنوان مثال حس‌گری که شدت رطوبت هوا را اندازه‌گیری می‌کند Humidity نامیده می‌شود.
سرعت باد مهمترین عاملی است که در یک دستگاه بادسنجی اندازه‌گیری می‌شود. هر ایستگاه بادسنجی حداقل دارای 3 حس‌گر بادسنج است که در ارتفاع 10 و 20 و 40 متری نصب شده و سرعت باد را اندازه‌گیری می‌کنند. طبق آخرین استانداردهای سازمان هواشناسی اطراف ایستگاه بادسنجی تا شعاع 90 متری نباید هیچگونه موانع طبیعی یا مصنوعی قرار داشته باشد. سنسورهای بادسنجی امروزه از نظر ساخت تنوع بسیار زیادی دارند ولی از نظر ساختاری به دو دسته بزرگ تقسیم‌ می‌شوند:
1- نوع مکانیکی
2- الکترونیکی یا اولتراسونیک
بادسنج نوع مکانیکی، از سه نیم کره تو خالی مانند کاسه که هر کدام توسط یک بازو به محور اصلی متصل است ساخته شده به همین دلیل آن را بادسنج کاسه‌ای نیز می‌نامند.
1-10- پتانسیل باد در ایران
کشور ایران 195/648/1 کیلومتر مربع وسعت دارد و در غرب قاره آسیا واقع شده و جزء کشورهای خاورمیانه محسوب می‌شود. در مجموع محیط ایران 8731 کیلومتر می‌باشد. حدوداً 90 درصد خاک ایران در محدوده فلات ایران واقع است. بنابراین ایران کشورهای کوهستانی محسوب می‌شود. بیش از نیمی از مساحت ایران را کوه‌ها و ارتفاعات یک چهارم را صحراها و کمتر از یک چهارم را اراضی قابل کشت تشکیل می‌دهند. ایران دارای آب و هوای متنوع و متفاوت است و با مقایسه نقاط کشور این تنوع را به خوبی می‌توان مشاهده کرد.
ارتفاع کوههای شمالی، غربی و جنوبی به قدری زیاد است که از تاثیر بادهای دریای خزر، دریای مدیترانه و خلیج‌فارس در نواحی داخلی ایران جلوگیری می‌کند. به همین سبب دامنه‌های خارجی این‌ کوه‌ها دارای آب و هوای مرطوب بوده و دامنه‌های داخلی آن خشک است. در رابطه با بادهای ایران می‌توان گفت که ایران با موقعیت جغرافیایی که دارد، در آسیا بین شرق و غرب و نواحی گرم جنوب و معتدل شمالی واقع شده است و در مسیر جریان‌های عمده هوایی بین آسیا، اروپا، آفریقا، اقیانوس هند و اقیانوس اطلس است که تاکنون آنچه مسلم است قرارگرفتن ایران در مسیر جریان‌های مهم هوایی زیر می‌باشد.
1- جریان مرکز فشار آسیای مرکزی در زمستان
2- جریان مرکز فشار اقیانوس هند در تابستان
3- جریان غربی از اقیانوس اطلس و دریای مدیترانه مخصوصاً در زمستان
4- جریان شمال غربی در تابستان در خصوص تعیین پتانسیل باد ایران در مطالعه فاز صفر پروژه (تعیین پتانسیل باد در ایران) که توسط معاونت امور انرژی وزارت نیرو انجام گرفته بود، 26 منطقه کشور در 45 سایت مورد مطالعه قرار گرفته است که براساس نتایج این مطالعه، ایران کشوری با باد متوسط می‌باشد که در برخی از مناطق آن باد مناسب و مداوم تری برای تولید برق موجود می‌باشد.
براساس بررسی‌های اولیه انجام شده در پروژه فوق‌الذکر، توان بالقوه انرژی باد در سایت‌های مطالعه شده حدود 6500 مگاوات برآورد گردیده است. در این راستا، دفتر باد و امواج سازمان انرژیهای نو ایران (سانا) به منظور توسعه، ترویج و برنامه‌ریزی جهت اجرای طرح‌ها و بهره‌برداری از انرژی بادی، اقدام به نصب سایت‌های ثبت آمار لحظه‌ای باد برای امکان سنجی احداث مزارع برق بادی به شرح زیر نموده است.
1- نصب 10 واحد ایستگاه بادسنجی 10 ، 20 و 40 متری در استان گیلان
2- نصب 7 واحد ایستگاه بادسنجی 10 ، 20 و 40 متری در استان آذربایجان شرقی، غربی و اردبیل
3- پروژه پتانسیل سنجی و تهیه اطلس باد کشور
1-11 نقشه‌ها و اطلس‌های موجود باد
در طی دهه گذشته، در بسیاری از کشورها مطالعاتی جهت تخمین منابع انرژی باد در دسترس در هر منطقه انجام گرفته است، برخی از این مطالعات منجر به تهیه اطلس باد مانند اطلس ملی منابع باد ایالات متحده آمریکا و اطلس ملی باد اروپا و اطلس ملی باد آمریکای لاتین و کارائیب گشته‌اند. همچنین نقشه‌های باد برای کشورهای چین، اسپانیا، پرو، مصر، ایران، سومالی و تعدادی از کشورهای مشترک المنافع به چاپ رسیده است.
به علاوه یک نقشه باد هم برای کل دنیا چاپ شده است.
همانطور که قبلاً نیز ذکر شد در کشور ما، تهیه اطلس باد کشور به عنوان یکی از مهمترین پروژه‌های جاری سازمان انرژی‌های نو ایران (سانا) می‌باشد که در حال اجراء است.

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   84 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله منابع انرژی ، باد و توربین

دانلود مقاله کار و انرژی

اختصاصی از فی فوو دانلود مقاله کار و انرژی دانلود با لینک مستقیم و پر سرعت .

 

تا بحال در مورد دینامیک بطور مفصل بر حسب نیرو، اندازه حرکت و … صحبت کرده‌ایم.
آنچه تا بحال می‌کرده‌ایم چنین بوده است که نیروی یک عامل طبیعی را بر ذره مورد بحث خود بدست می‌آوردیم (با اندازه‌گیری و …) سپس از روی این نیروی طبیعی، شتاب ذره را بدست می‌آوردیم. آنگاه با دانستن شرایط اولیه مسأله یعنی و حرکت ذره را برای زمان‌های بعدی پیش‌بینی می‌کردیم.

اما راه‌ دیگری امکان‌پذیر نیست؟ نمی‌توان جای بردار از کمیت اسکالری استفاده کرد؟ یا اینکه اصلاً را بدست نیاوریم بلکه صرفاً رابطه بین و را بدست آوریم بدون آنکه بخواهیم بدانیم که هر کدام بر حسب زمان چه مقادیری دارند یعنی که سرعت وقتی مکان ذره باشد چه برداری می‌شود: در خیلی از مسایل ما به این نیاز داریم و گاهی هم صرفاً همین برایمان مهم است. اگر از روش قدیمی استفاده کنیم می‌بایست و را بر حسب بدست آوریم آنگاه در این بین پارامتر را حذف کنیم تا با هم مستقیم رابطه یابند.
سؤالهای مختلفی پیش می‌آید مثلاً این که آیا فرآیند همواره امکان‌پذیر است؟ در صورتی می‌شود چنین رابطه‌ای را به طور مناسب برقرار دانست که بعضی خواص ریاضی را و داشته باشند تا حالت تابع داشته باشد یعنی اینکه . ممکن است در دو زمان و ، ها یکی باشند ولی سرعت‌ها فرق کنند. مثلاً وقتی پرتابه‌ای را به سمت بالا پرتاب می‌کنیم اگر موقع رفت در ارتفاعی خاص سرعتش باشد در موقع برگشت در همان ارتفاع سرعتش است و به ازای یک ، 2 تا داریم. اما جالب اینجاست که اندازه در هر دو حالت یکسان می‌ماند.

پس شاید بهتر باشد را بدست آوریم یعنی اندازه سرعت را. خواهیم دید که در خیلی از مسایل این است که مهم است نه بردار .
نکته دیگر آن که آیا به ازای همه ها لزوماً وجود دارد. یعنی اصلاً به همه نقاط فضا می‌توان دسترسی یافت؟ این امری است که قطعاً در یک حرکت اتفاق نمی‌افتد زیرا مسیر حرکت یک ذره صرفاً منحنی است ولی مجموعه‌ای از تمام حرکات ممکن که از یک نوع نیروی طبیعی نتیجه می‌شوند آیا می‌توانند تمام فضا را بپوشانند و اگر چنین کردند اگر در نقطه‌ای در مسیر همدیگر را قطع کردند آیا لزوماً در دو مسیر اندازه سرعت‌ها یکسان خواهد بود .

اینها سؤالات و موضوعاتی هستند که ما را به سمت تعاریفی جدید پیش می‌برند. آنکه سعی کنیم یک اثر طبیعی را مثلاً با یک تابع اسکالر نشان دهیم جای آنکه بردار نیروی آن را در فضا مشخص کنیم. خوب ببینیم چه می‌شود؟
کار نیروی متغیر
فرمول در صورتی صحیح است که نیروی F مقدار ثابتی باشد و یا اگر
متغیر است مقئار متوسط نیرو برابر F است در حالت کلی کار نیروی متغیر مکان F در
تغییر مکان از تا از رابطه به دست می آیداگر نمودار نیرو بر
حسب جابجایی معلوم باشد کار انجام شده در هر جابجایی با جمع جبری مساحتهای سطوح
محصور بین نمودار نیرو و محور جابجایی برابر است

 

 

 


انرژی جنبشی :
در بررسی حرکت اجسام معمولا دو نوع انرژی بیشتر مورد توجه قرار می‌گیرد. انرژی پتانسیل که ناشی از مکان قرار گیری جسم نسبت به سطحی که به عنوان سطح با پتانسیل صفر فرض می‌شود و انرژی جنبشی که هر جسم به دلیل حرکت دارای این نوع انرژی است. یعنی اگر جسمی ثابت باشد، انرژی جنبشی آن صفر خواهد بود. مخصوصا در مواردی که نیروهای موجود در مسئله از نوع پایستار باشند در این صورت انرژی مکانیکی بقا دارد و لذا اگر انرژی جنبشی جسم افزایش پیدا کند، انرژی پتانسیل کاهش می‌یابد و برعکس کاهش انرژی جنبشی با افزایش انرژی پتانسیل همراه است.

 

 

 

قضیه کار و انرژی
معمولا بیشترین کاربرد انرژی جنبشی در بحث حرکت در قضیه کار و انرژی ظاهر می‌شود. لازم به یادآوری است که هرگاه در اثر اعمال نیرویی ، یک جسم از محل اولیه خود جابجا شود، در این صورت می‌گویند که نیرو بر روی جسم کار انجام می‌دهد. بنابراین قضیه کار و انرژی بیان می‌کند که هرگاه بر روی جسمی کار انجام شود، انرژی جنبشی آن تغییر می‌کند. به عبارت دیگر تغییرات انرژی جنبشی با انجام کار انجام شده بر روی جسم برابر است.

 

قضیه کار و انرژی قانون جدید و مستقلی از مکانیک کلاسیک نیست. این قضیه برای حل مسائلی مفید است که در آنها کار انجام شده توسط نیروی برایند به راحتی قابل محاسبه است و ما می‌خواهیم سرعت ذره را در مکانهای خاصی پیدا کنیم. آنچه بیشتر اهمیت دارد این واقعیت است که قضیه کار و انرژی نقطه آغازی برای یک تعمیم جامع در علم فیزیک است. چون در بسیاری از موارد بهتر است کار انجام شده توسط هر نیرو را جداگانه محاسبه کرده و نام خاصی برای کار انجام شده توسط هر نیرو قائل شویم. لذا آنچه قبلا در مورد معتبر بودن این قضیه در مواردی که به صورت کار انجام شده توسط نیروی برایند تعبیر می‌کنیم، مشکلی ایجاد نمی‌کند.
یکای انرژی جنبشی
انرژی جنبشی یک جسم در حال حرکت با کاری که می‌تواند انجام دهد تا به حال سکون برسد، متناسب است. این نتیجه اعم از این که نیروهای اعمال شده ثابت یا متغیر باشند، صادق است. بنابراین یکای انرژی جنبشی و کار یکسان خواهند بود و انرژی جنبشی مانند کار یک کمیت اسکالر است. انرژی جنبشی گروهی از ذرات صرفا از انرژی جمع اسکالر انرژیهای جنبشی تک تک ذرات آن گروه بدست می‌آید.
انرژی جنبشی جسم صلب
معمولا در مورد حرکت جسم صلب به عنوان سیستمی از ذرات ، دو نوع انرژی جنبشی می‌توانیم تعریف کنیم. این دو نوع انرژی که بواسطه نوع حرکت به دو صورت متفاوت می‌تواند وجود داشته باشد.
انرژی جنبشی انتقالی
گفتیم که انرژی کمیتی اسکالر است. بنابراین در مورد یک سیستم متشکل از چند ذره ، انرژی جنبشی کل برابر با مجموع انرژی جنبشی تک تک ذرات خواهد بود. اما در مورد یک جسم صلب که تعداد ذرات خیلی زیاد است، نقطه‌ای به عنوان مرکز جرم تعریف می‌شود که نماینده کل جسم صلب است. بنابراین انرژی جنبشی انتقالی نیز به صورت نصف حاصلضرب جرم جسم صلب در مجذور سرعت مرکز جرم تعریف می‌شود.
انرژی جنبشی دورانی
جسم صلبی را در نظر بگیرید که با سرعت زاویه‌ای ω حول محوری که نسبت به یک چارچوب لخت خاص ثابت است، می‌چرخد. هر ذره این جسم در حال دوران مقدار معینی انرژی جنبشی دارد. چون تعداد این ذرات در جسم صلب زیاد است، لذا کمیتی به نام لختی دورانی تعریف می‌شود. لختی دورانی به صورت مجموع جملاتی تعریف می‌شود که هر جمله با حاصل ضرب جرم یک ذره از جسم صلب در مجذور فاصله عمودی ذره از محور دوران برابر است. بنابراین انرژ ی جنبشی دورانی جسم صلب که بخاطر دوران حاصل می‌شود، برابر است با نصف حاصل ضرب لختی دورانی جسم صلب در مجذور سرعت زاویه‌ای.

 

این رابطه شبیه انرژی جنبشی انتقالی جسم است. یعنی سرعت زاویه‌ای مانسته سرعت خطی است و لختی دورانی مانسته جرم لختی یا جرم انتقالی است. هر چند جرم یک جسم به محل آن بستگی ندارد، ولی لختی دورانی به محوری که جسم حول آن می‌چرخد، بستگی دارد. در واقع می‌توان گفت که انرژی جنبشی دورانی همان انرژی جنبشی انتقالی معمولی تمام اجزای جسم است و نوع جدیدی از انرژی نیست. انرژی جنبشی دورانی در واقع راه مناسبی برای بیان انرژی جنبشی هر جسم صلب در حال دوران است. انرژی جنبشی دورانی جسمی که با سرعت زاویه‌ای معین می‌چرخد، نه تنها به جرم جسم بستگی دارد، بلکه به چگونگی توزیع جرم آن نسبت به محور دوران نیز وابسته است.

 


کار :
آنچه از واژه کار در اذهان عمومی وجود دارد، با آنچه که در علم فیزیک به عنوان کار تعریف می‌شود، تفاوت دارد. در نظر عامه مردم هرگونه تلاش یا فعالیت را که از طرف یک شخص انجام می‌شود، کار می‌گویند، گو اینکه نتیجه این عمل مثبت ، منفی یا بی‌ نتیجه باشد. اما از نظر علم فیزیک عامل انجام کار نیرو است و تنها در شرایط خاصی که عمل نیرو منجر به جابجایی جسم شود، می‌توان به عمل نیرو واژه کار را اطلاق نمود. بنابراین اگر نیرویی بر یک جسم وارد شده ، ولی نتواند آن را جابجا کند، کار انجام یافته توسط نیرو صفر خواهد بود.

 

به عنوان مثال فرض کنید یک سنگ بسیار بزرگی در یک محل قرار داده شده است. حال از یک فرد خواسته می‌شود که این سنگ بزرگ را جابجا کند. فرد هر چه نیرو وارد می‌کند و به اصطلاح هرچه زور می‌زند، نمی‌تواند سنگ را جابجا کند. در این حالت علم فیزیک می‌گوید که این فرد هیچ کاری انجام نداده است. در صورتی که از نظر عمومی وی کار انجام داده است. لذا واژه کار در علم چیز متفاوت از واژه کار در اذهان عمومی است.
رابطه کار
فرض کنید که جسمی به جرم m در یک نقطه معین قرار دارد. بر این جسم نیروی ثابت F را به مدت معین t وارد کرده و آن را در راستایی که با امتداد نیرو زاویه حاده θ می‌سازد، به اندزه r جابجا می‌کنیم. در این صورت مقدار کار انجام شده بر روی جسم از رابطه زیر حاصل می‌شود.
W= F. r= FrCosθ

 

در رابطه فوق F و r کمیتهای برداری هستند و علامت نقطه در وسط آن بیانگر ضرب نقطه‌ای ، ضرب عددی یا اسکالر است. همچنین W بیانگر کار انجام شده می‌باشد.
محاسبه یکای کار
یکای کار را می‌توان از رابطه W=F.r حساب کرد. اگر برای سادگی فرض کنیم که بردار r در راستای بردار F باشد، در این صورت مقدار کار با حاصلضرب معمولی مقادیر عددی دو بردار F و r برابر خواهد بود. یعنی W=Fr خواهد بود. همچنین از مکانیک تحلیلی می‌دانیم که یکای نیرو برابر نیوتن (N) و یکای طول (r) برابر متر (m) است.بنابراین یکای کار برابر Nm خواهد بود. به افتخار ژول این واحد را ژول می‌نامند، یعنی یک ژول کار برابر با یک نیوتن در متر کار است.
محاسبه کار یک نیروی متغیر
اگر چنانچه نیروی F که عامل انجام دهنده کار است، مقدار ثابتی نباشد، یعنی در طول زمان متغیر باشد، در این صورت باید از یک رابطه انتگرالی برای محاسبه کار استفاده کنیم. در واقع مفهوم این مطلب را می‌توان اینگونه بیان کرد که فاصله جابجایی را به قسمتهای بسیار کوچک dr تقسیم می‌کنیم که در آن F مقداری ثابت است. سپس کار انجام شده در المان dr را محاسبه کرده و آنها را باهم جمع می‌کنیم و این در واقع همان مفهوم انتگرال است.
اهمیت کار
کار در واقع مفهوم بسیار مهمی است که در علم فیزیک نقش بسیار اساسی بازی می‌کند. به عنوان مثال با استفاده از مفهوم کار می‌توان در مورد یک دستگاه فیزیکی ، کمیتی به نام توان را تعریف کرد. توان عبارتست از کار انجام شده در واحد زمان بر روی دستگاه ، یا اینکه در مکانیک تحلیلی برای توصیف حرکت ذرات از قضیه کار انرژی جنبشی

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   12 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله کار و انرژی

پروژه شبکه های هوشمند انرژی

اختصاصی از فی فوو پروژه شبکه های هوشمند انرژی دانلود با لینک مستقیم و پر سرعت .

پروژه شبکه های هوشمند انرژی


پروژه شبکه های هوشمند انرژی

دانلود پروژه آماده 

دانلود پروژه شبکه های هوشمند انرژی بافرمت pdf تعدادصفحات 181

این پروژه جهت ارایه در مقطع کارشناسی طراحی وتدوین گردیده است وشامل کلیه مباحث مورد نیاز پایان نامه   این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی مااین پایان نامه  رابا  قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهد.حق مالکیت معنوی این اثر مربوط به نگارنده است وفقط جهت استفاده ازمنابع اطلاعاتی وبالا بردن سطح علمی شما دراین سایت ارایه گردیده است.


دانلود با لینک مستقیم


پروژه شبکه های هوشمند انرژی