فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

داربست

اختصاصی از فی فوو داربست دانلود با لینک مستقیم و پر سرعت .

داربست


داربست

داربست

داربست سازه ای موقتی است که از طریق آن شخص می تواند برای انجام عملیات ساختمانی به محل کار دسترسی پیدا کند. داربست شامل هر نوع سکوی کار، نردبان و نرده های محافظ است. داربستهای اصولا به دو دسته تقسیم می شوند:

1- داربستهای مهارشده.

2- داربستهای مستقل.

در این گونه داربستها یک ردیف ستونهای عمودی در فاصله مناسبی از دیوار طوری نصب می شوند که بتوان سکوهای کار (تخته های زیرپایی) را با پهنای مورد نظر برروی آنها سوار کرد. ستونهای عمودی به کمک لوله های افقی داربست به یکدیگر متصل شده و توسط قطعاتی عرضی به نام دستکهای افقی به ساختمان مهار می شوند. این داربست همراه با بالا آمدن ساختمان برپا می شود.

داربستهای مستقل

داربستهای از دو ردیف ستون عمودی تشکیل می شوند که توسط لوله های عرضی به یکدیگر متصل می گردند. این نوع داربست از ساختمان به عنوان تکیه گاه استفاده نمی کند و به همین جهت برای استفاده در ساختمانهای تیر پایه ای بسیار مناسب است.

تمامی داربستها باید به طور عمودی در فواصل تقریبی m6/3 و به طور افقی در فواصل m6 کاملا به ساختمان مهار شوند. برای انجام این کار همچنین می توان از لولة افقی مهار که در داخل دیوار یا در عرض درگاهی پنجره قرار می گیرد نیز استفاده کرد و قطعات عرضی داربست را به آنها متصل کرد. در روش دیگر می توان از لوله ای با پایة قابل تنظیم که در داخل درگاهی قرار می گیرد برای اتصالات قطعات عرضی استفاده کرد. در صورتی که درگاهی مناسب وجود نداشته باشد باید داربست را به کمک لوله های موربی که به سمت ساختمان متمایل اند، حایل کرد.

داربستها را می توان از مواد زیر ساخت:

1- لوله های فولادی

2- لوله های آلیاژ آلومینیم

3- چوب

خانه های کارگاهی

به طور کلی به خاطر عملیات و ماهیت موقتی محل ساختمان، برای اقامت کارکنان و انبار کردن مصالح نمی توان ساختمانهای دائمی احداث کرد. به هر حال سازنده به سلیقه خود می تواند مناسبترین امکاناتی را که برای هر پروژه ویژه به صرفه باشد، فراهم سازد. این کار علاوه بر بهبود روابط مدیریت و کارکنان، از میزان اتلاف مصالح در اثر دزدی، خسارات اتلافی و دشمنی نیز می کاهد. هرچه تسهیلات و امکانات رفاهی ایجاد شده در محل ساختمان بهتر باشد، به همان اندازه خشنودی کارکنان حاضر در محل نیز بیشتر خواهد بود و این امر در نهایت به باروری بیشتر منجر خواهد شد.

خانه های کارگاهی کارکنان اغلب به یکی از دو صورت زیر هستند:

1- کلبه های چوبی قابل تفکیک

2- کاروان یا کابین متحرک

کلبه های چوبی قابل تفکیک کلبه هایی پیش ساخته اند و برای استفاده مجدد در محل دیگر به راحتی می توان آنها را پیاده و سوار کرد. کلبه هایی با این خصوصیات باید با همان دقت ساختمانهای دائمی طراحی، ساخته و نگهداری شوند تا بتوان آنها را برای چندین سال و در پروژه های مختلف مورد استفاده قرار داد. اندازة طول و یا پهنای آن دسته از کلبه های چوبی قابل تفکیکی را که طراحی مناسبی دارند، می توان با افزودن قطعات اضافی افزایش داد.

کاروانها و کابینهای متحرک با ابعاد، سبکها و کاربردهای بسیار متنوعی ساخته می شوند. در ساخت آنها عموما از قاب بندی چوبی و روکش تخته چندلایی که به طرز مناسبی عایق بندی و تزیین شده استفاده می شود.

 

 

تعداد صفحات: 22


دانلود با لینک مستقیم


داربست

پایان نامه ساخت داربست های مهندسی بافت به روش Gas Foaming

اختصاصی از فی فوو پایان نامه ساخت داربست های مهندسی بافت به روش Gas Foaming دانلود با لینک مستقیم و پر سرعت .

پایان نامه ساخت داربست های مهندسی بافت به روش Gas Foaming


پایان نامه ساخت داربست های مهندسی بافت به روش Gas Foaming

متن کامل (همراه با تمام ضمائم) : پایان نامه ساخت داربست های مهندسی بافت به روش Gas Foaming

230 صفحه با فرمت ورد

دانشکده مهندسی پزشکی

 

 

 

 

فهرست

 

پیشگفتار1   

×نتایج قانونمند و استاندارد شده5

×گزینش و جداسازی سلول35 

×تولید داربست‏های پلیمری: قالب گیری حلال72 

×تولید داربست‏های پلیمری: لایه سازی غشاء84      

×تولید داربست‏های پلیمری: انجماد – خشک سازی106

 ×تولید داربست‏های پلیمری: اشکال کامپوزیت پلیمر- سرامیک121      

×تولید داربست‏های پلیمری: جداسازی فاز142      

×تولید داربست‏های پلیمری: پلیمریزاسیون (بسپارش)162

×تولید داربست‏های پلیمری: پردازش اسفنج گازی176

×بر هم کنش‏های سلولی سطح مصنوعی: بیومواد خود مجتمع192

×بر هم کنش‏های سلولی سطح مصنوعی: چسبندگی سلول هدف216

 

 

 

پیش گفتار

یکی از معضلات بزرگی که علم پزشکی از دیرباز با آن درگیر بوده است، ارائه درمانی قطعی برای بازسازی بافت های از کار افتاده و یا معیوب است. متداول ترین شیوه در درمان این نوع بافت ها، روش سنتی پیوند است که خود مشکلات عدیده ای را به دنبال دارد. از جمله این مشکلات می توان به کمبود عضو اهدائی، هزینه بالا و اثرات جانبی حاصل از پیوند بافت بیگانه Allograft)) که مهمترین آنها همان پس زنی بافت توسط بدن پذیرنده است اشاره کرد. این محدودیت ها دانشمندان را بر آن داشت تا راه حلی مناسب برای این معضل بیابند.

   مهندسی بافت با عمر حدوده 1 ساله خود روشی نوید بخش در تولید گزینه های بیولوژیکی برای کاشتنی ها (Implants) و پروتزها ارائه کرده و وعده بزرگ تهیه اندام های کاملاً عملیاتی برای رفع مشکل کمبود عضو اهدائی را می دهد. اهداف مهندسی بافت فراهم سازی اندام های کارآمد یا جایگزین های قسمتی از بافت برای بیمارانی با ضعف یا از کارافتادگی اندام و یا بیماری های حاد است که این امر با استفاده از روش‌های درمانی متنوع اندام مصنوعی- زیستی تحقق می یابد. بنا به تعریف، مهندسی بافت رشته ای است که از ترکیب علم بیولوژی مواد و علم مهندسی یا به عبارتی Biotech جهت بیان ارتباطات ساختاری بافت های فیزیولوژیکی و طبیعی پستانداران در راستای توسعه روش های نوین ترمیم بافت و جایگزین سازی بافت، توسعه یافته است. مهندسی بافت شامل مباحثی نظیر ترکیبات نوین سلول ها، بیومواد غیرسلولی، داروها، فرآورده های ژنی یا ژن هایی می باشد که قابل طراحی، تشخیص و ساخت بوده و امکان رهایش آنها به طور همزمان یا ترتیبی به عنوان عامل های درمانی میسر باشد. اگرچه داروها یا بیومواد غیر سلولی به مواد بسیاری اطلاق می گردد اما درمان های منهدسی بافت در واقع منحصر به فرد هستند.

داربست مهندسی بافت

در مهندسی بافت، سلول ها بر روی یک بستر از جنس پلیمر زیست تخریب پذیر بسیار متخلخل استقرار یافته، رشد و تکثیر می یابند. روند رشد این سلول ها در جهت بازسازی بافت در سه بعد است. یکی از اساسی ترین قسمت های مهندسی بافت، داربست های زیست تخریب پذیر هستند که تحت نام Scaffold شناخته می شوند. این داربست ها در حقیقت بستری متخلخل با ساختاری شبیه به ماتریس برون سلولی بافت (ECM) هستند که رشد سلول را به سمت تشکیل بافت مورد نظر جهت می دهند. از آنجا کلیه سلول های بدن به غیر از سلول های سیستم خون رسانی و بافت های جنینی خاص بر روی ECM رشد می کنند، ایجاد یک بستر مصنوعی در محیط in vitro بسیار اهمیت دارد. با رشد سلول ها بر روی داربست، داربست تخریب می شود. جنس این داربست ها پلیمر و در بعضی موارد کامپوزیت پلیمر- سرامیک است. پلیمر های متداول مورد استفاده در مهندسی بافت در جدول 1 آورده شده است.

  

پر استفاده ترین پلیمر ها در مهندسی بافت پلیمرهای خانواده پلی- هیدروکسی اسید شامل PGA , PLA و PLGA هستند که به طور گسترده به عنوان داربست مورد استفاده قرار می گیرند. داربست های کامپوزیت پلیمر-سرامیک در موارد ارتوپدی استفاده شده و از مهمترین سرامیک های به کار رفته در آنها می توان به تری کلسیم فسفات، تتراکلسیم فسفات و هیدورکسی آپاتیت اشاره کرد. علت به کارگیری سرامیک ها در داربست، افزایش استحکام پلیمر، چسبندگی به استخوان و قابلیت تحرک رشد درون استخوان است. بهینه ترین کامپوزیت در این مورد ترکیب PLGA و هیدروکسی آپاتیت شناخته می شود.

   مکانیزم تخریب PGA , PLA و کوپلیمر های آنها بر اساس هیدرولیز تصادفی باندهای استری زنجیره پلیمری است. محصول نهایی این تخریب آب و است که به آسانی از بدن دفع می شوند. یک داربست ایده آل باید دارای تخلخل مناسب برای انتشار مواد غذایی بوده و امکان پاکسازی مواد زائد را داشته و دارای پایداری مکانیکی مناسبی جهت تثبیت و انتقال بار باشد. علاوه بر این، شیمی سطح ماده باید چسبندگی سلول و علامت دهی داخل سلولی (intracellular signaling) را به نحوی ارتقاء دهد که سلول ها فنوتیپ طبیعی خودشان را بروز دهند. برای رشد سریع سلول، داربست باید دارای میکروساختار بهینه باشد، فاکتورهای مهم یک داربست عبارتند از اندازه خلل و فرج، شکل و مساحت ویژه سطح. خلل و فرج موجود در داربست در حقیقت مسیرهای غذارسانی سلول ها و دفع پسماندهای سلولی هستند. برای مثال خلل و فرج بهینه برای رشد سلولهای فیبروبلاست درون رست ، خلل و فرج مناسب برای بازسازی پوست یک پستاندار بالغ 30-350 , 20-125 برای بازسازی استخوان است. بنابراین هدف اصلی در ساخت داربست، کنترل دقیق اندازه خلل و فرج و تخلخل است. مورد دیگر نحوه ایجاد چسبندگی مناسب سلول به سطح داربست است که در این مورد هم شیوه های متفاوتی به کار برده می شود، یکی از ساده ترین شیوه ها به کارگیری رشته های کوچک پپتیدی در پروتئین های ECM است که به عنوان واسطه مسئولیت چسبندگی سلول به بیومواد را بر عهده دارند. اجزاء گوناگون سرم قابل حل (پروتئین ها، پپتیدها) و رشته RGD برای تسهیل چسبندگی سلول شناخته شده اند.

 

روش های ساخت داربست

   از آنجا که ECM بافت های مختلف باهم تفاوت دارد، داربست های مصنوعی به کار رفته برای هر بافت نیز با هم فرق می‌کند. تهیه داربست هایی با ماتریس های مختلف نیازمند به کارگیری روش های ساخت متفاوتی است که هر یک شیوه و کاربرد منحصر به خود را دارد. از جمله این روش ها می توان به
Melt Casting , Freeze Drying , Membrane Lamination , Solvent Casting

Gas Foaming , Polymerization, Phase Separation

اشاره کرد. شکل داربست یا به عبارتی Morphology آن باید دقیقاً شبیه بافت معیوب باشد. برای شبیه سازی شکل داربست با قسمت ناقص اندام (defect) از شیوه های کامپیوتری همانند CAD استفاده می شود. داربست پردازش شده بر اساس این الگو مورفولوژی دقیقی از ناحیه معیوب بافت خواهد داشت.

در ذیل خلاصه ای از روش های مهم ساخت داربست آمده است.

قالب گیری حلال (Solvent Casting)‍: قالب گیری حلال یک روش ساده برای تولید داربست مهندسی بافت است. در این روش پلیمر در یک حلال مناسب حل شده و در قالب ریخته می شود. سپس حلال حذف گردیده و حالت پلیمر را در شکل مورد نظر حفظ می‌کند. این شیوه به شکل های قابل حصول محدود می شود. غالباً تنها طرح های قابل شکل‌گیری در این روش صفحات صاف و لوله ها هستند. البته با قراردادن صفحات صاف روی هم نیز می توان به اشکال پیچیده تر دست یافت. در این شیوه می توان با شستن ذراتی مانند کریستال های نمک کاشته شده درون پلیمر که Progen خوانده می شود، داربست را به صورت متخلخل درآورد. مزیت اصلی قالب گیری حلال سادگی ساخت بدون احتیاج به تجهیزات خاص است. همچنین از آنجا که عمل ساخت در دمای اتاق انجام می گیرد نرخ تخریب پلیمر زیست تخریب پذیر به روش قالب گیری حلال کمتر از فیلم های قالب گرفته شده از طریق تراکم خواهد بود. عیب اصلی قالب گیری حلال باقی ماندن احتمالی حلال سمی درون پلیمر است. برای رفع این عیب باید به پلیمر اجازه داد تا کاملاً خشک شده و سپس با استفاده از خلاء حلال باقی مانده را خارج نمود. عیب دیگر این روش احتمال تغییر یافتن ماهیت پروتئین و دیگر مولکول های موجود در پلیمر به واسطه استفاده از حلال است. 

 

لایه سازی غشاء (Membrane Lamination): لایه سازی غشاء روش های درمانی از طریق سلول های کپسوله شده برای رهایش گسترده ای از محصولات به دست آمده از مولکول های کوچک (برای مثال، دوپامین، انکفالین ها) تا محصولاتی با ژن های بسیار بزرگ (مانند فاکتورهای رشد، ایمیونوگلوبولین ها) را در بر می گیرد. رهایش مواد فعال در مناطق خاصی از بدن به طور سنتی توسط کپسول های پلیمری تخریب پذیر و غیر تخریب پذیر که حاوی یک یا چند دارو هستند احاطه شده است. در این حوزه مواد در حین ساخت با یک ماتریس پلیمری ترکیب شده و سپس بعد از مدت زمانی مشخص از میان ماده (diffusion) و یا در خلال تخریب ماده (erusion) آزاد می شوند. در این جا کنترل مناسب کنتیک های آزاد شده از اهمیت خاصی برخوردار است. یک مثال در این مورد کنتیک های رها شده مرتبه صفر به دست آمده از میله های کوپلیمر استات اتیلن- ونیل (EVAc) به کار رفته در رهایش عامل های شیمی درمانی در مغز است. در طول دو دهه اخیر محققان تلاش کرده اند که مواد را از ناقل های رهایش هیبریدی زیست مصنوعی (bioartificial) که شامل لایه های غشا بر سطح اجزاء سلولی کپسوله شده که درون غشا هستند آزاد کنند. کاربرد و هدف اصلی سلول های کپسوله شده، درمان دردهای مزمن بیماری پارکینسون و دیابت نوع I، همچنین ناتوانی های دیگر ناشی از افت ترشح عملکرد سلول است که با کاشت اندام یا درمان های دارویی به طور کامل قابل مداوا نیستند. کپسوله کردن بافت عموما به دو شکل انجام می گیرد: لایه بندی غشا میکروکپسوله و ماکرو متخلخل در میکرو کپسوله سازی یک یا چند سلول با پراکندگی‌های کروی فراوان (با قطر 100-300 nm) کپسوله می شوند. در ماکرو کپسوله سازی تعداد زیادی از سلول ها یا توده های سلولی در یک یا چند کپسول نسبتاً بزرگ کاشته می شوند. مزیت روش دوم، پایداری شیمیایی و مکانیکی و سادگی بازیافت در صورت نیاز است. اولین دستگاهی که به این روش تأئیدیه ایالت متحده را کسب کرده است دستگاهی به نام کبدیار (Liver assist)

 

 

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن پایان نامه برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل پایان نامه همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است


دانلود با لینک مستقیم


پایان نامه ساخت داربست های مهندسی بافت به روش Gas Foaming

سمینار کارشناسی ارشد مهندسی پزشکی- بیومواد ساخت داربست های مهندسی بافت به روش Gas Foaming

اختصاصی از فی فوو سمینار کارشناسی ارشد مهندسی پزشکی- بیومواد ساخت داربست های مهندسی بافت به روش Gas Foaming دانلود با لینک مستقیم و پر سرعت .

سمینار کارشناسی ارشد مهندسی پزشکی- بیومواد ساخت داربست های مهندسی بافت به روش Gas Foaming


سمینار کارشناسی ارشد مهندسی پزشکی- بیومواد ساخت داربست های مهندسی بافت به روش Gas Foaming

دانلود سمینار کارشناسی ارشد مهندسی پزشکی- بیومواد ساخت داربست های مهندسی بافت به روشGas Foaming  با فرمت ورد و قابل ویرایش تعدادصفحات 240


پیش گفتار
یکی از معضلات بزرگی که علم پزشکی از دیرباز با آن درگیر بوده است، ارائه درمانی قطعی برای بازسازی بافت های از کار افتاده و یا معیوب است. متداول ترین شیوه در درمان این نوع بافت ها، روش سنتی پیوند است که خود مشکلات عدیده ای را به دنبال دارد. از جمله این مشکلات می توان به کمبود عضو اهدائی، هزینه بالا و اثرات جانبی حاصل از پیوند بافت بیگانه Allograft)) که مهمترین آنها همان پس زنی بافت توسط بدن پذیرنده است اشاره کرد. این محدودیت ها دانشمندان را بر آن داشت تا راه حلی مناسب برای این معضل بیابند.
   مهندسی بافت با عمر حدوده 1 ساله خود روشی نوید بخش در تولید گزینه های بیولوژیکی برای کاشتنی ها (Implants) و پروتزها ارائه کرده و وعده بزرگ تهیه اندام های کاملاً عملیاتی برای رفع مشکل کمبود عضو اهدائی را می دهد. اهداف مهندسی بافت فراهم سازی اندام های کارآمد یا جایگزین های قسمتی از بافت برای بیمارانی با ضعف یا از کارافتادگی اندام و یا بیماری های حاد است که این امر با استفاده از روش‌های درمانی متنوع اندام مصنوعی- زیستی تحقق می یابد. بنا به تعریف، مهندسی بافت رشته ای است که از ترکیب  علم بیولوژی مواد و علم مهندسی یا به عبارتی Biotech جهت بیان ارتباطات ساختاری بافت های فیزیولوژیکی و طبیعی پستانداران در راستای توسعه روش های نوین ترمیم بافت و جایگزین سازی بافت، توسعه یافته است. مهندسی بافت شامل مباحثی نظیر ترکیبات نوین سلول ها، بیومواد غیرسلولی، داروها، فرآورده های ژنی یا ژن هایی می باشد که قابل طراحی، تشخیص و ساخت بوده و امکان رهایش آنها به طور همزمان یا ترتیبی به عنوان عامل های درمانی میسر باشد. اگرچه داروها یا بیومواد غیر سلولی به مواد بسیاری اطلاق می گردد اما درمان های منهدسی بافت در واقع منحصر به فرد هستند.
داربست مهندسی بافت
 در مهندسی بافت، سلول ها بر روی یک بستر از جنس پلیمر زیست تخریب پذیر بسیار متخلخل استقرار یافته، رشد و تکثیر می یابند. روند رشد این سلول ها در جهت بازسازی بافت در سه بعد است. یکی از اساسی ترین قسمت های مهندسی بافت، داربست های زیست تخریب پذیر هستند که تحت نام Scaffold شناخته می شوند. این داربست ها در حقیقت بستری متخلخل با ساختاری شبیه به ماتریس برون سلولی بافت (ECM) هستند که رشد سلول را به سمت تشکیل بافت مورد نظر جهت می دهند. از آنجا کلیه سلول های بدن به غیر از سلول های سیستم خون رسانی و بافت های جنینی خاص بر روی ECM رشد می کنند، ایجاد یک بستر مصنوعی در محیط in vitro بسیار اهمیت دارد. با رشد سلول ها بر روی داربست، داربست تخریب می شود. جنس این داربست ها پلیمر و در بعضی موارد کامپوزیت پلیمر- سرامیک است. پلیمر های متداول مورد استفاده در مهندسی بافت در جدول 1 آورده شده است.




فهرست


عنوان    صفحه
    پیشگفتار    
    نتایج قانونمند و استاندارد شده    
    گزینش و جداسازی سلول    
    تولید داربست‏های پلیمری: قالب گیری حلال    
    تولید داربست‏های پلیمری: لایه سازی غشاء    
    تولید داربست‏های پلیمری: انجماد - خشک سازی    
    تولید داربست‏های پلیمری: اشکال کامپوزیت پلیمر- سرامیک    
    تولید داربست‏های پلیمری: جداسازی فاز    
    تولید داربست‏های پلیمری: پلیمریزاسیون (بسپارش)    
    تولید داربست‏های پلیمری: پردازش اسفنج گازی    
    بر هم کنش‏های سلولی سطح مصنوعی: بیومواد خود مجتمع    
    بر هم کنش‏های سلولی سطح مصنوعی: چسبندگی سلول هدف  






دانلود با لینک مستقیم


سمینار کارشناسی ارشد مهندسی پزشکی- بیومواد ساخت داربست های مهندسی بافت به روش Gas Foaming