فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله در مورد طراحی و شبیه سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

اختصاصی از فی فوو مقاله در مورد طراحی و شبیه سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد طراحی و شبیه سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی


مقاله در مورد طراحی و شبیه سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه99

 

بخشی از فهرست مطالب

چکیده                                                          1

فصل1: مقدمه

2

  ۱-۱  طرح مسئله

2

  ۲-۱  اهداف تحقیق

۳

  ۳-۱  معرفی فصل های مورد بررسی در این تحقیق

۴

فصل2: انرژی باد و انواع توربین های بادی

۵

  ۱-۲  انرژی باد

۶

      ۱-۱-۲  منشا باد

۶

      ۲-۱-۲  پیشینه استفاده از باد

۷

      ۳-۱-۲  مزایای انرژی بادی

۸

      ۴-۱-۲  ناکارآمدیهای انرژی بادی

۹

      ۵-۱-۲  وضعیت استفاده از انرژی باد در سطح جهان

۱۰

  ۲-۲  فناوری توربین های بادی

۱۱

      ۱-۲-۲  توربینهای بادی با محور چرخش افقی

۱۲

      ۲-۲-۲  توربینهای بادی با محور چرخش عمودی

۱۲

      ۳-۲-۲  اجزای اصلی توربین بادی

۱۴

      ۴-۲-۲  چگونگی تولید توان در سیستم های بادی

۱۵

          ۱-۴-۲-۲  منحنی پیش بینی توان توربین باد

۱۵

  ۳-۲  تقسیم بندی سیستم های تبدیل کننده انرژی باد (WECS)  بر اساس نحوه عملکرد

۲۰

      ۱-۳-۲  سیستم های تبدیل کننده انرژی باد (WECS)  سرعت ثابت

۲۰

      ۲-۳-۲  سیستم های تبدیل کننده انرژی باد (WECS)  سرعت متغیر

۲۲

      ۳-۳-۲  سیستم های تبدیل کننده انرژی باد بر مبنای ژنراتور القایی با تغذیه دوگانه (DFIG)

۲۴

      ۴-۳-۲  سیستم های تبدیل کننده انرژی باد مجهز به توربین های سرعت متغیر با مبدل  فرکانسی با ظرفیت کامل

۲۶

فصل۳: تاریخچه کنترل فرکانس سیستم های قدرت در حضور واحدهای بادی، معرفی مدل ریاضی و الگوریتم ازدحام ذرات

۲۷

  ۱-۳  مرورری بر کارهای انجام شده

۲۹

  ۲-۳  کنترل DFIG

۳۳

  ۳-۳  مدل دینامیکی سیستم تنظیم فرکانس توربین بادی با ژنراتور القایی تغذیه دوگانه

۳۶

  ۴-۳  مدل دینامیکی ساختار تنظیم فرکانس سیستم تک ناحیه ای در حضور توربین بادی با ژنراتور القایی تغذیه دوگانه (DFIG)

۴۰

  ۵-۳  الگوریتم حرکت گروهی پرندگان یا ازدحام ذرات PSO

۴۴

  ۶-۳  نتیجه گیری

۴۷

فصل۴: طراحی کنترل کننده PI بهینه سازی شده توسط الگوریتم ازدحام ذرات

۴۸

  ۱-۴  بهینه سازی طراحی کنترل‌کننده PI با استفاده از روش بهینه سازی هوشمند ازدحام ذرات (PSO)

۴۹

      ۱-۱-۴  نتایج شبیه سازی کنترل کننده PI بهینه سازی شده با الگوریتم PSO

۵۳

۴-۲  نتیجه گیری

۵۹

فصل پنجم: طراحی کنترل کننده فازی

۶۱

  ۱-۵  منطق فازی

۶۲

      ۱-۱-۵  تعریف مجموعه فازی

۶۲

      ۲-۱-۵  مزایای استفاده از منطق فازی

۶۳

۵-۲  طراحی کنترل کننده فازی

۶۴

      ۱-۲-۵  ساختار یک کنترل کننده فازی

۶۴

          ۱-۱-۲-۵  فازی کننده

۶۵

          ۲-۱-۲-۵  پایگاه قواعد

۶۶

          ۳-۱-۲-۵  موتور استنتاج

۶۶

          ۴-۱-۲-۵  غیر فازی ساز

۶۷

  ۳-۵  طراحی کنترل‌کننده فازی بهینه شده با الگوریتم PSO

۶۸

      5-3-1  نتایج شبیه سازی

۷۲

فصل ششم: نتیجه گیری و پیشنهادات

78

  ۱-۶ نتیجه گیری

۷۹

  ۲-۶  پیشنهادات

۸۱

 

 

 

 

 

 

 


 

فهرست جدول­ها

 

جدول ۱-۲: انواع توربین های عرضه شده در بازار

۱۱

جدول ۴-۱: اطلاعات شبیه سازی

۵۱

جدول ۲-۴: پارامترهای انتخابی الگوریتم PSO

۵۳

جدول ۳-۴: اطلاعات شبیه سازی

۵۳

جدول ۱-۵: پارامترهای انتخابی الگوریتم PSO

۷۳

جدول ۲-۵: پارامترهای بهینه شده کتترل کننده فازی با الگوریتم PSO

۷۳

 


 

فهرست شکل­ها

 

شکل ۱-۲ : تولید باد

۶

شکل ۲-۲: وسیله ای بر اساس طرح ایرانیان به منظور استفاده از انرژی باد [۱۰‍]

۷

شکل ۳-۲: ساختمان توربین بادی محور افقی [۱۱‍‍]

۱۳

شکل ۴-۲: توربین بادی نوع داریوس (محور عمودی) [۱۱]

۱۳

شکل ۵-۲: نمایی از یک سیستم تبدیل انرژی بادی در توربین بادی با محور افقی [۱‍]

۱۴

شکل ۶-۲: دیاگرام سیستم بادی [۲]

۱۵

شکل ۷-۲: منحنی توان-سرعت باد یک توربین بادی زاویه گام قابل تنظیم ۱۵۰۰ کیلوواتی با سرعت قطع خروجی ۲۵ متربرثانیه [۲‍]

۱۶

شکل ۸-۲ : نمودار تغییرات  بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام متغیر [۱]

۱۸

شکل ۹-۲:  نمودار تغییرات  بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام متغیر [۱]

۱۹

شکل ۱۰-۲: نمودار تغییرات  و  بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام ثابت ‌[۱]

۲۰

شکل ۱۱-۲: توربین بادی سرعت ثابت

۲۱

شکل ۱۲-۲: آرایشی از توربین بادی با سرعت متغیر محدود با مقاومت متغیر رتور

۲۳

شکل ۱۳-۲: ساختمان توربین بادی نوع DFIG

۲۵

شکل ۱-۳: نمایی از عملکرد سیستم تبدیل انرژی باد

۳۴

شکل ۲-۳: ساختار کنترل کننده توربین بادی DFIG  [۳۰]

۳۵

شکل ۳-۳: مدل دینامیکی سیستم قدرت تک ناحیه ای در حضور واحدهای تولید غیر سنتی (بادی)[۳۰]

۳۶

شکل ۴-۳: مدل دینامیکی توربین بادی دارای ژنراتور DFIG  به منظور تنظیم فرکانس[۳۰]

۳۷

شکل ۵-۳: بلوک دیاگرام سیستم تنظیم فرکانس سیستم قدرت تک ناحیه ای در حضور توربین بادی DFIG [۳۰]

۴۱

شکل ۶-۳: شماتیک برداری روابط الگوریتم PSO

۴۵

شکل ۷-۳: فلوچارت الگوریتم PSO

۴۶

شکل ۱-۴: سیستم حلقه بسته

۵۰

شکل ۲-۴: نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI کلاسیک  به ازای تغییر بار ، و

۵۱

شکل ۳-۴: سیستم حلقه بسته با اضافه کردن انتگرال مربع خطا

۵۲

شکل ۴-۴: نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI بهینه به ازای تغییر بار ، و

۵۴

شکل ۵-۴: مقایسه نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI بهینه و کلاسیک به ازای تغییر بار  

۵۵

شکل 6-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI کلاسیک برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۶

شکل7-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۶

شکل 8-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI  کلاسیک برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۷

شکل 9-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۷

شکل ۱0-۴: تغییرات توان تولید شده توسط واحدهای بادی با در نظر گرفتن کنترل کننده PI کلاسیک برای کنترل سرعت توربین بادی

۵۸

شکل ۱1-۴: تغییرات توان تولید شده توسط واحدهای بادی با در نظر گرفتن کنترل کننده PI بهینه برای کنترل سرعت  توربین بادی

۵۹

شکل ۱-۵: نمایی از یک کنترل کننده فازی

۶۵

شکل ۲-۵: مثال هایی از توابع عضویت: (a) تابع z ،  (b) گوسین، (c) تابع s، (d-f) حالتهای مختلف مثلثی، (g-i) حالتهای مختلف ذوزنقه ای، (j) گوسین تخت،(k)  مستطیلی، (l) تک مقداری

۶۵

شکل ۳-۵: تابع عضویت خطا

۶۹

شکل ۴-۵: تابع عضویت مشتق خطا

۶۹

شکل ۵-۵: نمودار تغییرات سرعت توربین بادی برای کنترل کننده PI بهینه به ازای تغییر بار

۷۲

شکل ۶-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش 

۷۴

شکل ۷-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش 

۷۴

شکل ۸-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش 

۷۵

شکل ۹-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش 

۷۵

شکل ۱۰-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۶

شکل ۱۱-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۶

شکل ۱۲-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۷

شکل ۱۳-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۷

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


چکیده

 

امروزه با توجه به نیاز روزافزون بشر به انرژی از یک سو و کاهش منابع سنتی انرژی از سویی دیگر، نیاز به یافتن منابع جدید انرژی به روشنی احساس می گردد. جایگزینی منابع فسیلی با انرژی های نو و تجدیدپذیر راهکاری است که مدت هاست مورد توجه کشورهای پیشرفته جهان قرار گرفته است. در بین منابع انرژی های نو، انرژی باد به دلیل پاک و پایان ناپذیر بودن، داشتن قابلیت تبدیل به انرژی الکتریکی و رایگان بودن گزینه مناسبی برای این منظور می باشد. مشکل عمده در بهره برداری از آن این است که تغییرات لحظه ای سرعت باد باعث ایجاد نوسانات در توان خروجی توربین بادی می شود که این نوسانات به شکل تغییر فرکانس در سرتاسر سیستم منعکس می شود و عملکرد سیستم را تحت تاثیر قرار می دهد. به صورت سنتی وظیفه کنترل فرکانس به عهده واحد های تولید کننده انرژی سنتی می باشد اما با افزایش مشارکت واحدهای تولید بادی در تولید انرژی برای بهبود عملکرد سیستم، آنها نیز باید در کنترل فرکانس شرکت کنند.

 

این پایانامه به بررسی نقش مشارکت واحدهای تولید بادی درکنترل فرکانس پرداخته است و برای کنترل فرکانس، کنترل هر چه بهتر تغییرات سرعت توربین های بادی پیشنهاد شده است. ابتدا سیستم قدرت مورد نظر با استفاده از کنترل کننده PI کلاسیک برای کنترل کردن سرعت ژنراتور توربین بادی شبیه سازی شده و در ادامه به منظور بهبود عملکرد سیستم، بهینه سازی تنظیم پارامترهای کنترل کننده PI  با الگوریتم بهینه سازی هوشمند ازدحام ذرات پیشنهاد شده است. در پایان به علت اینکه سیستم های قدرت در حضور واحدهای بادی در معرض تغییر پارامترها و عدم قطعیت های زیادی قرار می گیرند جایگزینی کنترل کننده PI با کنترل کننده فازی پیشنهاد شده است که غیر خطی می باشد و عملکرد مقاومتری نسبت به تغییر پارامترهای سیستم از خود نشان می دهد. بدیهی است با بهینه سازی کنترل کننده فازی مورد نظر با الگوریتم بهینه سازی هوشمند ازدحام ذرات نتایج مطلوب تری بدست می آید.

 

 

 

کلید واژه: کنترل فرکانس سیستم قدرت- سیستم های تبدیل کننده انرژی باد- کنترل کننده PI – کنترل کننده فازی- الگوریتم ازدحام ذرات

 

 

 

 

 

 

 

فصل اول

 

مقدمه

 

 

 

 

 

۱-۱  طرح مسئله

 

امروزه با توجه به نیاز روزافزون بشر به انرژی الکتریکی از یک سو و محدودیت ذخایر سوخت‌های فسیلی و همچنین نگرانی‌های زیست محیطی در پی افزایش گاز دی اکسید کربن و دیگر گاز‌های گلخانه‌ای از سویی دیگر، نیاز به یافتن منابع جدید انرژی به روشنی احساس می‌گردد. جایگزینی منابع فسیلی با انرژی‌های نو و تجدیدپذیر راهکاری است که مدت‌هاست مورد توجه کشور‌های پیشرفته جهان قرار گرفته است. یکی از مهمترین انرژی‌های تجدید پذیر، انرژی باد می‌باشد. انرژی باد پایان ناپذیر، رایگان و پاک است در ضمن به راحتی قابل تبدیل به انرژی الکتریکی می‌باشد پس می‌تواند در بین منابع انرژی‌های نو گزینه مناسبی جهت جایگزینی با منابع فسیلی باشد[۱].

 

استفاده از انرژی باد در هر سال رشد ۱۰% را در دنیا و رشد ۳۷% را در اروپا داشته است. پیشبینی می‌شود تا سال ۲۰۲۰ در حدود ۱۰% انرژی کل دنیا توسط نیروگاه‌های بادی تولید شود که تا ۵۰% در سال ۲۰۵۰ افزایش خواهد داشت[۲‍].

 

با وجود اینکه استفاده از انرژی باد به منظور تولید انرژی الکتریکی پیشینه زیادی دارد اما به دلیل نفوذ کمی که در تولید انرژی داشته‌اند تاثیر وجود آنها در شبکه چندان مورد بررسی قرار نگرفته است. منبع انرژی باد غیر قابل پیش بینی است بنابراین اضافه شدن مقدار قابل توجهی از واحد‌های تولید بادی به شبکه‌های الکتریکی موجود، تاثیر قابل ملاحظه‌ای بر طراحی، کارکرد و کنترل شبکه خواهد گذاشت.

 

 به علت متغیر بودن سرعت باد سرعت توربین‌های بادی مدام در حال تغییر است و از آنجایی که توان خروجی توربین‌های بادی با مکعب سرعت باد متناسب است تغییرات لحظه‌ای سرعت باد باعث ایجاد نوسانات در توان خروجی توربین بادی می‌شود و این نوسانات به شکل تغییر فرکانس در سرتاسر سیستم منعکس می‌شود. از طرفی می‌دانیم به منظور اینکه یک سیستم قدرت عملکرد رضایت بخشی داشته باشد، ثبات فرکانس در آن امری ضروری است. پس می‌توان گفت در حضور واحد‌های تولید بادی در سیستم ‌های قدرت که آشفتگی‌ها و تغییر پارامتر‌های بیشتری را به سیستم تحمیل می‌کنند کنترل فرکانس سیستم بیش از پیش مورد توجه قرار می‌گیرد و نیازمند مطالعات بیشتری می‌باشد.

 

به صورت سنتی سیستم‌های تبدیل کننده انرژی بادی [1](WECS) در کنترل فرکانس شرکت نمی‌کنند، به این معنی که وقتی فرکانس در شبکه زیاد یا کم می‌شود واحد‌های بادی تولید خود را زیاد یا کم نمی‌کنند بلکه با افزایش یا کاهش تولید واحد‌های سنتی افت یا افزایش فرکانس جهت نگه داشتن فرکانس شبکه در محدوده مجاز خود، جبران می‌شود. اما با افزایش مشارکت واحد‌های تولید بادی در تولید انرژی برای بهبود عملکرد سیستم، آنها نیز باید در کنترل فرکانس شرکت کنند.

 

.

 

این پایان‌نامه به بررسی نقش توربین‌های بادی سرعت متغیر در تنظیم و کنترل فرکانس پرداخته است و به منظور نگه داشتن فرکانس در محدوده مورد نظر کنترل هرچه بهتر تغییرات سرعت توربین‌های بادی پیشنهاد شده است. به این منظور ابتدا سیستم قدرت مورد نظر با استفاده از کنترل‌کننده PI کلاسیک برای کنترل‌کننده سرعت ژنراتور توربین بادی در حضور اغتشاش‌های کوچک شبیه سازی شده و در ادامه به منظور بهبود عملکرد سیستم، بهینه‌سازی تنظیم پارامترهای کنترل‌کننده PI با الگوریتم بهینه‌سازی هوشمند ازدحام ذرات[2] پیشنهاد شده است. از آنجایی که سیستم قدرت در حضور واحد‌های بادی مدام در معرض عدم قطعیت و تغییر پارامتر قرار می‌گیرد پیشنهاد شده است که به منظور کنترل تغییرات سرعت توربین‌های بادی به جای کنترل‌کننده PI، کنترل‌کننده فازی قرار بگیرد که عملکرد مقاومتری نسبت به تغییر پارامتر‌های سیستم از خود نشان می‌دهد. بدیهی است با بهینه‌سازی کنترل‌کننده فازی مورد نظر با الگوریتم بهینه‌سازی  هوشمند ازدحام ذرات نتایج مطلوب تری بدست می‌آید.

 

۲-۱  اهداف تحقیق

 

رشد سریع و نفوذ بیشتر واحد‌های تولید بادی در سیستم‌های قدرت موجب شده روش‌های کنترل فرکانس این سیستم ها متفاوت با روش‌های سنتی کنترل فرکانس باشد. ارائه روش‌های جدید کنترل فرکانس در اینگونه سیستم‌ها همواره مورد توجه محققین بوده است.

 

در زیر به خلاصه ای از اهداف این تحقیق اشاره شده است.

 

  • ارائه مدل فضای حالت برای سیستم قدرت تک ناحیه‌ای که به منظور تولید انرژی از واحد‌های تولید انرژی سنتی و غیرسنتی (بادی) به طور همزمان بهره گرفته است.
  • شبیه‌سازی سیستم معرفی شده با استفاده از کنترل‌کننده PI کلاسیک برای کنترل‌کننده سرعت ژنراتور توربین بادی در حضور اغتشاش‌های کوچک.
  • بهبود عملکرد سیستم با بهینه‌سازی تنظیم پارامتر‌های کنترل‌کننده PI کلاسیک با الگوریتم بهینه‌سازی هوشمند ازدحام ذرات.
  • ارائه کنترل‌کننده فازی به جای کنترل‌کننده PI و تنظیم ضرایب آن با الگوریتم بهینه‌سازی هوشمند ازدحام ذرات و مقایسه عملکرد آنها.

 

۳-۱  معرفی فصل ‌های مورد بررسی در این تحقیق

 

فصل دوم به بررسی انرژی باد، انواع توربین‌های بادی و نحوه عملکرد سیستم‌های تبدیل کننده انرژی باد می‌پردازد. فصل سوم به ارائه مدل فضای حالت سیستم قدرت تک ناحیه‌ای در حضور واحد‌های بادی پرداخته، و برای کنترل تغییرات سرعت توربین‌های بادی از کنترل‌کننده PI کلاسیک استفاده می‌کند و در پایان به معرفی الگوریتم ازدحام ذرات می‌پردازد. در فصل چهارم به منظور بهبود عملکرد، تنظیم پارامتر‌های کنترل‌کننده PI کلاسیک با الگوریتم بهینه‌سازی هوشمند ازدحام ذرات انجام می‌گیرد. فصل پنجم نیز به ارائه کنترل‌کننده فازی بهینه با استفاده از الگوریتم بهینه‌سازی هوشمند ازدحام ذرات برای کنترل‌کننده سرعت ژنراتور توربین بادی می‌پردازد و در نهایت در فصل ششم نتایج با هم مقایسه شده‌اند و زمینه‌ای برای کار‌های بعدی ارائه می‌گردد.

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل دوم

 

انرژی باد و انواع توربین‌های بادی

 

 

 

 

 

یکی از مهمترین انرژی‌های تجدید پذیر، انرژی باد می‌باشد. انرژی باد ارزان، فراوان، پاک و به راحتی قابل تبدیل به انرژی الکتریکی می‌باشد. بخش اول این فصل با نگاهی کلی به منشا انرژی باد و پیشینه استفاده از آن به بیان مزایا و معایب بهره برداری از این انرژی پرداخته و در ادامه وضعیت استفاده از انرژی باد را در سطح جهان بررسی می‌نماید. در بخش دوم انواع توربین‌های بادی بر اساس محور چرخش پره ها مورد بررسی قرار می گیرند، همچنین قسمت های مختلف سیستم بادی، نحوه تولید توان و پارامترهای مهم توربین‌های بادی معرفی می شوند. بخش پایانی این فصل نیز به تقسیم بندی انواع سیستم های تبدیل کننده انرژی باد بر اساس نحوه عملکردشان می‌پردازد.

 

 

 

 

 

۱-۲  انرژی باد

 

۱-۱-۲  منشأ باد

 

انرژی باد، انرژی حاصل از هوای متحرک می‌باشد. هنگامی که تابش خورشید به طور نامساوی به سطوح ناهموار زمین می‌رسد سبب ایجاد تغییرات دما و فشار می‌گرددو در اثر این تغییرات باد به وجود می‌آید. همچنین اتمسفر کره زمین به دلیل حرکت وضعی زمین، گرما را از مناطق گرمسیری به مناطق قطبی انتقال می‌دهد که این امر نیز باعث به وجود آمدن باد می‌گردد. جریان اقیانوسی نیز به صورت مشابه عمل نموده و عامل ۳۰%  انتقال حرارت کل در جهان می‌باشد[۱].

 

 

 

 

 

شکل ۱-۲ : تولید باد

 

در مقیاس جهانی، این جریانات اتمسفری به صورت یک عامل قوی جهت انتقال حرارت و گرما عمل می نمایند.

 

 

 

 

 


[1] Wind energy conversion system

[2] Particle swarm optimization

 


دانلود با لینک مستقیم


مقاله در مورد طراحی و شبیه سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

پروژه صنعت خودرو سازی

اختصاصی از فی فوو پروژه صنعت خودرو سازی دانلود با لینک مستقیم و پر سرعت .

پروژه صنعت خودرو سازی


پروژه صنعت خودرو سازی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه141

 

بخشی از فهرست مطالب

چکیده پروژه

 

 

 

فصل اول

 

مروری بر تاریخچه سایپا

 

بخش اول ورود خودرو به ایران

 

 

 

تولید اتومبیل به صورت مونتاژ

 

تاسیس شرکت سهامی ایران تولید اتومبیلهای سیترئن

تولید رنوه تغییر نام شرکت

تولید انواع نیسان

 

تولید انواع خودرو کلاس متوسط

 

استراتژی و برنامه های گروه خودرو سازی سایپا

 

فصل دوم

 

ساختار دستگاه AFM S/F :

 

2-عمل TRAVEL  :

 

3-عمل STOPPER LOCK /UNLOCK  :

چکیده پروژه

 

در عصر حاضر علوم به طرز شگفت انگیزی رشد نموده اند فن آروی نیز با استفاده از علوم رشد نموده است در این پروژه از تلفیق علوم کنترل صنعتی و کامپیوتر به عنوان یک فن آوری برای حل چند مشکل بزرگ صنعتی استفاده شده است در صنعت برای کنترل یک پروسه صنعتی از PLC استفاده می شود که ملزم به سیم کشی های فراوان از پروسه با تابلوی PLC است در دستگاه متحرک انبوه سیمهای متحرک باعث توقفات فراوان خط تولید می شود که می توان با استفاده از یک تابلوی کوچک  PLC  بر روی دستگاه مورد نظر و LINK  کردن آنها با هم توسط مودم نوری می توان با استفاده از نور برای انتقال اطلاعات در سطح صنعتی استفاده نمود که به تفصیل توضیح داده خواهد شد .

 

 

 

 

 

فصل اول

مروری بر تاریخچه سایپا

امروزه صنعت خودروسازی در تمام کشورهای صنعتی پیشرفته از جمله صنایع مهم و اساسی است .به عنوان مثال 10 درصد از ارزش افزوده صنعتی و همچنین 10 درصد اشتغال صنعتی در کشورهایی مانند ژاپن و امریکا از قبل این صنعت ایجاد می گردد .

با توجه به اهمیت این صنعت و وجود عوامل عدیده رشد و پویایی صنعت خودروسازی همچون تقاضای کافی در مقیاس اقتصادی ، صنایع جانبی وحامی ،تکنولوژی مرتبط و

درایران امید می رود با همت و تلاش دست اندرکاران و پشتیبانی مسؤلان محترم نظام مقدس جهوری اسلامی ایران ، صنعت خودرسازی در روند رشدشتابان خود علاوه بر پاسخگویی مناسب به تقاضای بازار د اخلی و بازارهای خارجی به خصوص جماهیر تازه استقلال یافته آسیای میانه و حوزه خلیج فارس به صنعتی شدن و ورود فعالانه کشور به بازارهای جهانی کمک مؤثر نماید وبا صدور قطعات و محصولات صنعتی می توانیم کشور را از وابستگی به ارز نفت که داریم در نوسان است ، نجات دهیم .

بخش اول ورود خودرو به ایران

کلیات : با اختراع موتورهای چهار زمانه درون سوزدر نیمه دوم قرن 19 و تکمیل آن متنناسب با پیشرفت های دانش بشری و سر انجام تولید انبوه انواع خودروها در اوایل قرن بیستم ، موارد استفاده اتومبیل به عنوان وسیله ای لوکس و تجملی جهت گشت گذار آخر هفته و نشان دادن برتری و منزلت اجتماعی مالک آن تغییر یافت و به صورت وسیله ای ضروری برای رتق وفتق مشکلات روزمره زندگی به خصوص در شهرهای رو به گسترش درآمد و گسترش زندگی شهر نشینی نیز برضرورت تولید بیشتر و متنوع تر انواع خودرو تاثیر نهاد .

در ایران نیز با افزایش ارتباط خارجی وتوسعه زندگی شهر نشینی ، مورد استفاده اتومبیل به عنوان یک کالای لوکس و سپس با تاخیر نسبتا طولانی به عنوان یک کالای ضروری مشهود است . بر اساس اطلاعات موجود ‍، براساس اطلاعات موجود مضفرالدین قاجار اولین پادشاهی بود که اقدام به خرید اتومبیل کرد . او در نخستین سفرش به فرنگ دستور خرید اتومبیل مورد علاقه اش را صادر می نماید و سعدالدوله وزیر مختار ایران در بلژیک را مسؤل این امر می نماید . به هر حال اتومبیلی به سلیقه شاه ایران خریداری و به همراه راننده بلژیکی که به همین منظور استخدام شده بود از راه دریا ارسال می گردد تا قبل از مراجه شاه به پایتخت ، او سوار بر این اتومبیل وارد تهران شود .

هر چند که این اتومبیل اولین خودرو وارد به خاک ایران نبود اما تمایل و رغبت شاه به اتومبیل ، موجب ترغیب سایرین به خصوص متمولان و درباریان ایران به خرید اتومبیل جهت ابراز برتری اجتماعی گردید .

 


دانلود با لینک مستقیم


پروژه صنعت خودرو سازی

پاورپوینت پیاده سازی مدیریت دانش

اختصاصی از فی فوو پاورپوینت پیاده سازی مدیریت دانش دانلود با لینک مستقیم و پر سرعت .

پاورپوینت پیاده سازی مدیریت دانش


پاورپوینت پیاده سازی مدیریت دانش

این فایل حاوی مطالعه پیاده سازی مدیریت دانش می باشد که به صورت فرمت PowerPoint در 85 اسلاید در اختیار شما عزیزان قرار گرفته است، در صورت تمایل می توانید این محصول را از فروشگاه خریداری و دانلود نمایید.

 

 

 

فهرست
پیاده‌سازی مدیریت دانش
مدیریت دانش و مدیریت استراتژیک
مدیریت دانش و مزیت استراتژیک
برنامه‌ریزی استراتژی مدیریت دانش
ترسیم چشم انداز دانش
گام‌های اصلی اجرای مدیریت دانش
روش‌های پیاده‌سازی مدیریت دانش
مدل مراحل بلوغ مدیریت دانش در سازمان
موانع و علل عدم پیشرفت
منابع انسانی و مدیریت دانش
مدل بهره‌وری منابع انسانی در مدیریت دانش
مدل بهره‌وری منابع انسانی
مدل پایه‌های ساختمان دانش
نقش انسان در مدیریت دانش
بازار دانش
اقتصاد سیاسی بازارهای دانش
اجزاء تشکیل دهنده بازار دانش
نقش افراد در بازار دانش
ویژگی های کلی کار

 

تصویر محیط برنامه


دانلود با لینک مستقیم


پاورپوینت پیاده سازی مدیریت دانش

مقاله در مورد شبیه سازی کامپیوتری

اختصاصی از فی فوو مقاله در مورد شبیه سازی کامپیوتری دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد شبیه سازی کامپیوتری


مقاله در مورد شبیه سازی کامپیوتری

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه11

 

شبیه سازی کامپیوتری

شبیه سازی کامپیوتری (شبیه سازی رایانه، جزو مفیدی برای بسیاری از سیستم‌های طبیعی در فیزیک، شیمی و زیست‌شناسی و نیز برای سیستم‌های انسانی در اقتصاد و علوم اجتماعی (جامعه‌شناسی کامپیوتری) و همچنین در مهندسی برای به دست آوردن بینش نسبت به عمل این سیستم‌ها شده است. یک نمونه خوب از سودمندی استفاده از رایانه‌ها در شبیه سازی را می‌توان در حیطه شبیه سازی ترافیک شبکه جستجو کرد. در چنین شبیه سازی‌هایی رفتار مدل هر شبیه سازی را مطابق با مجموعه پارامترهای اولیه منظور شده برای محیط تغییر خواهد داد.شبیه سازی‌های کامپیوتری] اغلب به این منظور به کار گرفته می‌شوند تا انسان از شبیه سازی‌های حلقه‌ای در امان باشد. به طور سنتی، مدل برداری رسمی سیستم‌ها از طریق یک مدل ریاضی بوده است به نحوی که تلاش در جهت یافتن راه حل تحلیلی برای مشکلات بوده است که پیش بینی رفتار سیستم را با استفاده از یک سری پارامترها و شرایط اولیه ممکن ساخته است. شبیه سازی کامپیوتری اغلب به عنوان یک ضمیمه یا جانشین برای سیستم‌های مدل سازی است که در آن‌ها راه حل‌های تحلیلی بسته ساده ممکن نیست. انواع مختلفی از شبیه سازی کامپیوتری وجود دارد که وجه مشترک همه آن‌ها در این است که تلاش می‌کند تا یک نمونه از برنامه‌ای برای یک مدل تولید کنند که در آن امکان محاسبه کامل تمام حالات ممکن مدل مشکل یا غیر ممکن است.)

به طور رو به افزونی معمول شده است که نام انواع مختلفی از شبیه سازی شنیده می‌شود که به عنوان «محیط‌های صناعی» اطلاق می‌شوند. این عنوان اتخاذ شده است تا تعریف شبیه سازی عملاً به تمام دستاوردهای حاصل از رایانه تعمیم داده شود.



دانلود با لینک مستقیم


مقاله در مورد شبیه سازی کامپیوتری

دانلود تحقیق مقاوم سازی تیر مرکب بتن ـ فولادبا استفاده از CFRP

اختصاصی از فی فوو دانلود تحقیق مقاوم سازی تیر مرکب بتن ـ فولادبا استفاده از CFRP دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق مقاوم سازی تیر مرکب بتن ـ فولادبا استفاده از CFRP


دانلود تحقیق مقاوم سازی تیر مرکب بتن ـ فولادبا استفاده از CFRP

خلاصه: همواره استفاده از موادکمپوزیتِ پیشرفته برای احیای فرسودگیِ زیر بنا سرتاسر جهان را در بر گرفته است.تکنیک های موجود در عرف فعلی برای تقویت پل های غیر استانداردگران و وقت گیر است وبه کار ونیروی انسانی زیادی دارد.چند روش جدید از لایه های فیبرهای تقویت شده پلیمری (FRP)  برای اهداف تعمیر وبازسازی استفاده کردند،که این فیبرها دارای وزن کم ومقاومت بالا هستند ودربرابر خوردگی نیز مقاوم اند.ظرفیت باربری تیر مرکب بتن ـ فولاد با استفاده از فیبرکربن تقویت شدة پلیمری (CFRP) که با چسب اپوکسی چسبانده شده اند و برای مقاومت در برابر کشش ساخته شده اند می تواند بطور قابل بهبود یابد.این مقاله نتایج مطالعه و تحقیق بر روی رفتا تیر مرکب بتن وفولاد که با ورق های CFRP تقویت شده است در زیر بارهای استاتیکی را ارائه می دهد.جمعاً سه اندازة بزرگ تیر مرکب که از تیرهای فولادی با سایز13.6 ×W355 - A36 ودالی بتنی به ضخامت  75mmو عرض910mm ساخته شدو مورد آزمایش قرار گرفت.ضخامت ورق های CFRP  ثابت بود ولی تعداد آنها در هر نمونه بصورت یک،سه وپنج لایه بود.نتایج آزمایش نشان داد که ورق های CFRP  چسبانده شده با اپوکسی ظرفیت باربری نهایی تیر مرکب را افزایش می دهد و رفتار آن را می توان تا حد قابل قبولی با روش های سنتی محاسبه پیش بینی کرد.

معرفی
در طی35  سال گذشته انجمن راه و حمل و نقل آمریکا(AASHTO)  و وزارت راه و ترابری دولت فدرال(FHWA) برنامه هایشان را برای ارزیابی پل ها در هر شش ماه یکبار ارتقا داده اند معلوم شد که یک سوم پل های بزرگ راه های ایالات متحده که مورد بررسی قرار گرفته بودند غیر استاندارد هستند. براساس آخرین اطلاعات و آمار مرکزملی فهرست پل ها (NBI) تعداد پل های بزرگ راه ها که عملاً منسوخ
شده‌اند بیش از 81000 است.
بیش از 43 درصد این پل ها از فولاد ساخته شده اند.پل های فولادی جزء گروهی بودند که در گزارش NBI بیشترین تأکید در بازسازی آن ها گوشزد شده بود. زنگ زدگی، نقص در نگه داری مناسب و خستگی جزئیات آسیب پذیر مشکلات عمده در پل های فولادی بود.همچنین تعداد زیادی از این پل ها برای تحمل بار عبور مرور بیشتر نیاز به ارتقا و احیا خواهد داشت.در گزارشات NBI  همواره قید شده است که تعمیر ونوسازی احیاء به صرفه تر از ساخت دوباره یک پل جدید است.هزینة بازسازی وتعمیردراکثرمواردخیلی ارزان ترازدوباره ساختن است همچنین به وقت کمتری نیزنیازدارد.درنتیجه مدت کمتری خدمات شهری دچار اختلال می شود.با توجه به منابع محدود برای کاستن از مشکلات مربوط به پل های فولادی نیاز به مواد جدید و نو و روش های مقرون به صرفه بدیهی است .
برتری خواص فیزیکی و مکانیکی FRPها آن ها را به موارد خوبی برای تعمیر و بازسازی سازه ها بدل کرده است.FRP ها از نخ هایی با مقاومت بالا ساخته شده اند؛(با مقاومت کششی بیش از 2گیگا پاسکال)مثل شیشه،کربن کولار (نوعی فیبرصند گلوله) که در شبکه از رزین گذاشته شده است. کمپوزیت های شیشه(فایبر گلاس) به آسانی در دسترس هستند و واقعاً هم ارزان هستند.آنها در مصالح ساختمانی از جمله بتن به کار رفته اند ولی ضریب کششی کم این کمپوزیت ها آن ها را برای تقویت وتعمیر سازه های فولادی بلا استفاده کرده است در حالی که CFRP ها خواص میکانیکی قابل ملاحظه ای از خود نشان می دهند به طوری که مقاومت کششی آن 1200مگا پاسکال ومدول الاستیسیتة آن ها بیش از 140گیگا پاسکال است.همچنین ورق های CFRP  کمتر از یک پنجم فولاد وزن دارد و در برابر خوردگی و زنگ زدگی مقاوم اند.
لایه های CFRP با ضریب مدول کششی بالا که بوسیله اپوکسی چسبانده شده اند می توانند در برابر تنش های کششی یک عضو کششی مقاومت کنند و سختی تیر سراسری را افزایش دهند.با اضافه کردن لایه های CFRP به عضو کششی تنش در آن کاهش خواهد یافت و به همین ترتیب مدت زمان تسلیم عضو نیز بهبود خواهد یافت.در طول یک دهه اخیر پژوهش های زیادی بر روی تعمیر و بازسازی تیرهای بتنی بوسیله FRP ها که اپوکسی بهم چسبانده شده اند صورت گرفته است ولی پژوهش های اندکی در مورد استفاده از این مواد برای تقویت تیرهای فولادی و تعمیرشان به وسیله این مواد انجام شده است.
این مقاله تأثیر CFRP های چسبانده شده با اپوکسی را در تنش موجود در بال تیر آهن به کار رفته در یک تیر مرکب بتن ـ فولادو همچنین بهبود ظرفیت باربری وسختی آن را مورد بررسی قرار می دهد.

کارهای قبلی
معمولی ترین روش مرمت پل ها موارد زیر هستند
1ـ تقویت اعضا
2ـ اضافه کردن تعداد اعضا
3ـ افزایش رفتار کمپوزیت(یکپارچة مرکب)
4ـ ایجاد پیوستگی در استحکام
5ـ پُستtensioning
به کلی روش های سنتی که دربالا ذکر شد به ماشین آلات سنگین و قطع خدمات شهری به مدت طولانی نیاز دارند و بسیار گران هستند.و در بیشتر موارد میزان منابع مورد مصرف برای حل مشکل را هم در نظر نمی گیرند.
به عنوان مثال، سالها استفاده از ورق های فولادی جوش داده شده برای تعمیر و تقویت سازه های موجود عمومی ترین روش برای این کار بوده است. اولین استفاده از این روش، به سال 1934 در فرانسه برمی گردد در زمانی که یک پل 73 ساله تقویت شد. ضعف های عمومی ورق های جوش داده شده موارد زیر هستند:
1ـ برای آوردن و جوش دادن ورق های فولادی به ماشین آلات سنگین نیاز بود.
2ـ حساسیت جزئیات جوش در برابر فرسودگی
3ـ امکان ایجاد خوردگی (سوختن) در اثر شوک الکتریکی ما بین صفحات و عضو موجود برای اتصال آن ها به هم پژوهش های زیادی بر روی استفاده از ورق های فولادی به هم چسبیده با اپوکسی برای تقویت سازه های بتنی و فولادی انجام شده است. اولین گزارش به سال1964 برمی گردد در بندر«دوربان» در آفریقای جنوبی ، که تقویت در یک تیر بتنی در هنگام ساخت به صورت تصادفی جا مانده بود. ( تیر مسلح نبود ). تیر بتنی با ورق های فولادی بوسیله اپوکسی در برابر تنش کششی مقاوم شد. در ژاپن نیز با همین روش بیش از 200 بزرگ راه مرتفع بتنی که معیوب بودند تقویت شدند.

 

 

 

 

شامل 30 صفحه word


دانلود با لینک مستقیم


دانلود تحقیق مقاوم سازی تیر مرکب بتن ـ فولادبا استفاده از CFRP