فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

روشی برای رنگ کردن نخ پلی استر با استفاده از رنگ ایندیگو و افزایش خواص تثبیت رنگ در آن

اختصاصی از فی فوو روشی برای رنگ کردن نخ پلی استر با استفاده از رنگ ایندیگو و افزایش خواص تثبیت رنگ در آن دانلود با لینک مستقیم و پر سرعت .

روشی برای رنگ کردن نخ پلی استر با استفاده از رنگ ایندیگو و افزایش خواص تثبیت رنگ در آن


روشی برای رنگ کردن نخ پلی استر با استفاده از رنگ  ایندیگو و افزایش خواص تثبیت رنگ در آن

فایل بصورت ورد (قابل ویرایش) و در16 صفحه می باشد.

 

چکیده

نخ پلی استر با رنگ خمی ایندیگو رنگرزی شد و اثرات آن عملاً مورد آزمایش و بررسی قرار گرفت. رنگ های خمی که عموماً برای الیاف سلولزی استفاده می گردد ، می تواند برای رنگ کردن مواد پلی استریز استفاده شود، به ویژه از متمرکز می شویم بر روی خواص تثبیت رنگ از نظر؟؟؟ شتشو. در این کار تحقیقاتی ، شرایط مناسب رنگرزی مواد مطالعه قرار گرفت. علاوه بر این قابلیت شستشوی رنگ ایندیگو مقایسه شده با رنگ های دیسپرس که برای تعیین خواص ثبات رنگ استفاده شده بودند ، آنالیز HPLC نشان داد که وقتی زمان رنگرزی افزایش داده شد، تغییرات ساختاری ایندیگو روی کاهش قدرت رنگ مواد رنگ شده تأثیر گذار بود. از روی مقایسه سیستم ایندیگوی دیسپرس و سیستم لوکو ، متوجه شدیم که سیستم ایندیگو دیسپرس تأثیر اندکی در جذب رنگ دارد.


1- مقدمه

رنگ های متداول مورد استفاده برای الیاف صنعتی مانند پلی استر و پلی آمید ، به صورت رنگ های دیسپرس و اسیدی برای رنگ کردن الیاف فوق استفاده گردید. کاربرد نامبرده و در واقع تمامی انواع رنگ ها برای الیاف مربوط می شود به واکنش رفت و برگشتی بین جسم و مولکول رنگ. در این مقاله توجه شده است به رنگرزی الیاف با رنگ خمی ایندیگو برای نخ های پلی استر.

با آنکه الیاف یا نخ های پلی استر با استفاده از رنگ های دیسپرس رنگ می شوند و مطالعاتی نیز در زمینه خواص جذب کامل رنگ توسط الیاف انجام شده است، توجه چندانی به کاربرد رنگ های خمی برای رنگ کردن الیاف پلی استر صورت نگرفته است. از لحاظ خواص ثبات ، به ویژه در برابر شستشو ، ثبات در حد قابل قبولی با استفاده از رنگ های دیسپرس وجود ندارد که این امر به علت احیاء و انتقال رنگ می باشد. در این مطالعه رنگرزی (1) رنگ خمی ممکن است ثبات لازم را فراهم کند و روش جایگزین مناسبی باشد برای رنگ های دیسپرس.

به طور کلی ، رنگرزی توسط رنگ های خمی ثبات در برابر شستشو را افزایش می دهد. خاصیت نامحلول بودن رنگ های خمی می تواند ثبات در برابر شستشو را بهتر بنماید. در این مقاله به بررسی یکی از مهمترین رنگ های خمی برای رنگ کردن پلی استر و خواص رنگ کردن آن پرداخته ایم.


دانلود با لینک مستقیم


روشی برای رنگ کردن نخ پلی استر با استفاده از رنگ ایندیگو و افزایش خواص تثبیت رنگ در آن

پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

اختصاصی از فی فوو پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی دانلود با لینک مستقیم و پر سرعت .

پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی


پایان نامه  مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

 

 

 

 

 

 

 

تعداد  صفحات : 223
فرمت فایل: word(قابل ویرایش)  
 فهرست مطالب:
 عنوان                                                                                                             صفحه

فهرست علائم    ر
فهرست جداول    ز
فهرست اشکال    س

چکیده    1

فصل اول    
مقدمه نانو    3
1-1 مقدمه    4
   1-1-1 فناوری نانو    4
1-2 معرفی نانولوله‌های کربنی    5
   1-2-1 ساختار نانو لوله‌های کربنی    5
   1-2-2 کشف نانولوله    7
1-3 تاریخچه    10

فصل دوم    
خواص و کاربردهای نانو لوله های کربنی    14
2-1 مقدمه    15
2-2 انواع نانولوله‌های کربنی    16
   2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT)    16
   2-2-2 نانولوله‌ی کربنی چند دیواره (MWNT)    19
2-3 مشخصات ساختاری نانو لوله های کربنی    21
   2-3-1 ساختار یک نانو لوله تک دیواره    21
   2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره    24
2-4 خواص نانو لوله های کربنی    25
   2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن    29
       2-4-1-1 مدول الاستیسیته    29
       2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک    33
       2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها    36
2-5 کاربردهای نانو فناوری    39
   2-5-1 کاربردهای نانولوله‌های کربنی    40
       2-5-1-1 کاربرد در ساختار مواد    41
       2-5-1-2 کاربردهای الکتریکی و مغناطیسی    43
       2-5-1-3 کاربردهای شیمیایی    46
       2-5-1-4 کاربردهای مکانیکی    47

فصل سوم    
روش های سنتز نانو لوله های کربنی     55
3-1 فرایندهای تولید نانولوله های کربنی    56
   3-1-1 تخلیه از قوس الکتریکی    56
   3-1-2 تبخیر/ سایش لیزری    58
   3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD)    59
   3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD )    61
   3-1-5 رشد فاز  بخار    62
   3-1-6 الکترولیز    62
   3-1-7 سنتز شعله    63
   3-1-8 خالص سازی نانولوله های کربنی    63
3-2 تجهیزات    64
   3-2-1 میکروسکوپ های الکترونی    66
   3-2-2 میکروسکوپ الکترونی عبوری (TEM)    67
   3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM)    68
   3-2-4 میکروسکوپ های پروب پیمایشگر (SPM)    70
       3-2-4-1 میکروسکوپ های نیروی اتمی (AFM)    70
       3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM)    71

فصل چهارم    
شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته    73
4-1 مقدمه    74
4-2 مواد در مقیاس نانو    75
   4-2-1 مواد محاسباتی    75
   4-2-2 مواد نانوساختار    76
4-3 مبانی تئوری تحلیل مواد در مقیاس نانو    77
   4-3-1 چارچوب های تئوری در تحلیل مواد    77
       4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد    77
4-4 روش های شبیه سازی    79
   4-4-1 روش دینامیک مولکولی    79
   4-4-2 روش مونت کارلو    80
   4-4-3 روش محیط پیوسته    80
   4-4-4 مکانیک میکرو    81
   4-4-5 روش المان محدود (FEM)    81
   4-4-6 محیط پیوسته مؤثر    81
4-5 روش های مدلسازی نانو لوله های کربنی    83
   4-5-1 مدلهای مولکولی    83
       4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی)    83
       4-5-1-2 روش اب انیشو    86
       4-5-1-3 روش تایت باندینگ    86
       4-5-1-4 محدودیت های مدل های مولکولی    87
   4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها    87
       4-5-2-1 مدل یاکوبسون    88
       4-5-2-2 مدل کوشی بورن    89
       4-5-2-3 مدل خرپایی    89
       4-5-2-4 مدل  قاب فضایی    92
4-6 محدوده کاربرد مدل محیط پیوسته    95
   4-6-1 کاربرد مدل پوسته پیوسته    97
   4-6-2 اثرات سازه نانولوله بر روی تغییر شکل    97
   4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله    98
   4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله    99
   4-6-5 محدودیتهای مدل پوسته پیوسته    99
       4-6-5-1 محدودیت تعاریف در پوسته پیوسته    99
       4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته    99
   4-6-6 کاربرد مدل تیر پیوسته      100

فصل پنجم    
مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی     102
5-1 مقدمه    103
5-2 نیرو در دینامیک مولکولی    104
   5-2-1 نیروهای بین اتمی    104
       5-2-1-1 پتانسیلهای جفتی    105
       5-2-1-2 پتانسیلهای چندتایی    109
   5-2-2 میدانهای خارجی نیرو    111
5-3 بررسی مدل های محیط پیوسته گذشته    111
5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی    113
   5-4-1 مدل انرژی- معادل    114
       5-4-1-1 خصوصیات  محوری نانولوله های کربنی تک دیواره    115
       5-4-1-2 خصوصیات  محیطی نانولوله های کربنی تک دیواره    124
   5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS    131
       5-4-2-1 تکنیک عددی بر اساس المان محدود    131
       5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS    141
   5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB    155
       5-4-3-1 مقدمه    155
       5-4-3-2 ماتریس الاستیسیته    157
       5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی    158
       5-4-3-4 تعیین و نگاشت المان    158
       5-4-3-5 ماتریس کرنش-جابجائی    161
       5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای    162
       5-4-3-7 ماتریس سختی برای یک حلقه کربن    163
       5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه    167
       5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه    168

فصل ششم    
نتایج    171
6-1 نتایج حاصل از مدل انرژی-معادل    172
   6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره    173
   6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره    176
6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS    181
   6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [    182
   6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره    192
6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB    196

فصل هفتم    
نتیجه گیری و پیشنهادات     203
7-1 نتیجه گیری    204
7-2 پیشنهادات    206

فهرست مراجع     207
چکیده
از آنجائیکه شرکت های بزرگ در رشته نانو فناوری  مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و  محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند  بیشتر توسعه یافته اند.
پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.
در این پایان نامه از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاه  مختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:
1.    مدل انرژی- معادل
2.    مدل اجزاء محدود بوسیله نرم افزار ANSYS
3.    مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB
مدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگ  در جهت های محوری و محیطی بدست آمده است.
در  مدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی،  نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.
در  مدل اجزاء محدود سوم، کد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.
اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایه  مورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنی  تنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوری برای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لوله  افزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.
نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.
واژه های کلیدی: نانولوله های کربنی ، خواص مکانیکی، محیط پیوسته ، تعادل- انرژی ، اجزاء محدود ، ورق گرافیتی تک لایه،  ماتریس سختی.
 


دانلود با لینک مستقیم


پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

پاورپوینت معرفی خواص و مزایای عدس خوراکی با قابلیت ویرایش تعداد صفحات 30 اسلاید

اختصاصی از فی فوو پاورپوینت معرفی خواص و مزایای عدس خوراکی با قابلیت ویرایش تعداد صفحات 30 اسلاید دانلود با لینک مستقیم و پر سرعت .

پاورپوینت معرفی خواص و مزایای عدس خوراکی با قابلیت ویرایش تعداد صفحات 30 اسلاید


پاورپوینت  معرفی خواص و مزایای  عدس خوراکی  با قابلیت ویرایش  تعداد صفحات 30 اسلاید

عدس از قدیمی ترین منابع غذایی گیاهی بشر است و عمر آن به قدمت تاریخ کشاورزی است. از عدس هم در قرآن (سوره بقره آیه 61) و هم در انجیل نام برده شده است. وجود بقایای دانه های عدس در مقابر مصری به 2300 سال قبل از میلاد مسیح می رسد. کشت آن در مصر، جنوب اروپا و غرب آسیا در قدیم رواج داشته و از این مناطق بعداً به شمال اروپا، هندوستان، چین و بطرف غرب تا اتیوپی پراکنده گردیده است.

 

 

تعدا اسلاید : 30


دانلود با لینک مستقیم


پاورپوینت معرفی خواص و مزایای عدس خوراکی با قابلیت ویرایش تعداد صفحات 30 اسلاید

پایان نامه کارشناسی ارشد مکانیک: مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

اختصاصی از فی فوو پایان نامه کارشناسی ارشد مکانیک: مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی دانلود با لینک مستقیم و پر سرعت .

پایان نامه کارشناسی ارشد مکانیک: مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی


پایان نامه کارشناسی ارشد مکانیک: مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

پایان نامه جهت دریافت درجه کارشناسی ارشد در

رشته مهندسی مکانیک گرایش طراحی کاربردی

 

 

 

 

 

فهرست مطالب

عنوان                                                                                                           صفحه

 

فهرست علائم. ر

فهرست جداول. ز

فهرست اشکال. س

 

چکیده 1

 

فصل اول..

مقدمه نانو. 3

1-1 مقدمه. 4

1-1-1 فناوری نانو. 4

1-2 معرفی نانولوله‌های کربنی.. 5

1-2-1 ساختار نانو لوله‌های کربنی.. 5

1-2-2 کشف نانولوله. 7

1-3 تاریخچه. 10

 

فصل دوم.

خواص و کاربردهای نانو لوله های کربنی.. 14

2-1 مقدمه. 15

2-2 انواع نانولوله‌های کربنی.. 16

2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT). 16

2-2-2 نانولوله‌ی کربنی چند دیواره (MWNT). 19

2-3 مشخصات ساختاری نانو لوله های کربنی.. 21

2-3-1 ساختار یک نانو لوله تک دیواره 21

2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره 24

2-4 خواص نانو لوله های کربنی.. 25

2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن.. 29

2-4-1-1 مدول الاستیسیته. 29

2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک… 33

2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها 36

2-5 کاربردهای نانو فناوری.. 39

2-5-1 کاربردهای نانولوله‌های کربنی.. 40

2-5-1-1 کاربرد در ساختار مواد. 41

2-5-1-2 کاربردهای الکتریکی و مغناطیسی.. 43

2-5-1-3 کاربردهای شیمیایی.. 46

2-5-1-4 کاربردهای مکانیکی.. 47

 

فصل سوم.

روش های سنتز نانو لوله های کربنی 55

3-1 فرایندهای تولید نانولوله های کربنی.. 56

3-1-1 تخلیه از قوس الکتریکی.. 56

3-1-2 تبخیر/ سایش لیزری.. 58

3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD). 59

3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD ) 61

3-1-5 رشد فاز بخار. 62

3-1-6 الکترولیز. 62

3-1-7 سنتز شعله. 63

3-1-8 خالص سازی نانولوله های کربنی.. 63

3-2 تجهیزات.. 64

3-2-1 میکروسکوپ های الکترونی.. 66

3-2-2 میکروسکوپ الکترونی عبوری (TEM). 67

3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM). 68

3-2-4 میکروسکوپ های پروب پیمایشگر (SPM). 70

3-2-4-1 میکروسکوپ های نیروی اتمی (AFM). 70

3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM). 71

 

فصل چهارم.

شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته. 73

4-1 مقدمه. 74

4-2 مواد در مقیاس نانو. 75

4-2-1 مواد محاسباتی.. 75

4-2-2 مواد نانوساختار. 76

4-3 مبانی تئوری تحلیل مواد در مقیاس نانو. 77

4-3-1 چارچوب های تئوری در تحلیل مواد. 77

4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد. 77

4-4 روش های شبیه سازی.. 79

4-4-1 روش دینامیک مولکولی.. 79

4-4-2 روش مونت کارلو. 80

4-4-3 روش محیط پیوسته. 80

4-4-4 مکانیک میکرو. 81

4-4-5 روش المان محدود (FEM). 81

4-4-6 محیط پیوسته مؤثر. 81

4-5 روش های مدلسازی نانو لوله های کربنی.. 83

4-5-1 مدلهای مولکولی.. 83

4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی) 83

4-5-1-2 روش اب انیشو. 86

4-5-1-3 روش تایت باندینگ… 86

4-5-1-4 محدودیت های مدل های مولکولی.. 87

4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها 87

4-5-2-1 مدل یاکوبسون. 88

4-5-2-2 مدل کوشی بورن. 89

4-5-2-3 مدل خرپایی.. 89

4-5-2-4 مدل قاب فضایی.. 92

4-6 محدوده کاربرد مدل محیط پیوسته. 95

4-6-1 کاربرد مدل پوسته پیوسته. 97

4-6-2 اثرات سازه نانولوله بر روی تغییر شکل.. 97

4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله. 98

4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله. 99

4-6-5 محدودیتهای مدل پوسته پیوسته. 99

4-6-5-1 محدودیت تعاریف در پوسته پیوسته. 99

4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته. 99

4-6-6 کاربرد مدل تیر پیوسته 100

 

فصل پنجم.

مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی 102

5-1 مقدمه. 103

5-2 نیرو در دینامیک مولکولی.. 104

5-2-1 نیروهای بین اتمی.. 104

5-2-1-1 پتانسیلهای جفتی.. 105

5-2-1-2 پتانسیلهای چندتایی.. 109

5-2-2 میدانهای خارجی نیرو. 111

5-3 بررسی مدل های محیط پیوسته گذشته. 111

5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی.. 113

5-4-1 مدل انرژی- معادل. 114

5-4-1-1 خصوصیات محوری نانولوله های کربنی تک دیواره 115

5-4-1-2 خصوصیات محیطی نانولوله های کربنی تک دیواره 124

5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS. 131

5-4-2-1 تکنیک عددی بر اساس المان محدود. 131

5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS. 141

5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB.. 155

5-4-3-1 مقدمه. 155

5-4-3-2 ماتریس الاستیسیته. 157

5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی.. 158

5-4-3-4 تعیین و نگاشت المان. 158

5-4-3-5 ماتریس کرنش-جابجائی.. 161

5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای.. 162

5-4-3-7 ماتریس سختی برای یک حلقه کربن.. 163

5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه. 167

5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه. 168

 

فصل ششم.

نتایج   171

6-1 نتایج حاصل از مدل انرژی-معادل. 172

6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره 173

6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره 176

6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS. 181

6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [. 182

6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره 192

6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB.. 196

 

فصل هفتم.

نتیجه گیری و پیشنهادات 203

7-1 نتیجه گیری.. 204

7-2 پیشنهادات.. 206

 

فهرست مراجع 207

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فهرست علائم

تعریف                                                                                               علائم اختصاری    

 

SWCNTs : Single-Walled Carbon Nanotubes

MWCNTs : Multi-Walled Carbon Nanotubes

CNTs : Carbon Nano Tubes

MWNTs : Multi-Walled Nano Tubes

FED : Field Emission Devices

TEM : Transmission Electron Microscope

SEM : Scanning Electron Microscopy

CVD : Chemical Vapor Deposition

PECVD : Plasma Enhanced Chemical Vapor Deposition

SPM : Scanning Probe Microscopy

NEMs : Nano Electro Mechanical System

AFM : Atomic Force Microscopy

STM : Scanning Tunnelling Microscopy

FEM : Finite Element Modeling

ASME : American Society of Mechanical Engineers

RVE : Representative Volume Element

SLGS: Single-Layered Grephene Sheet

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فهرست جداول

عنوان                                                                                                           صفحه

جدول 4-1: اتفاقات مهم در توسعه مواد در 350 سال گذشته ……………………………………………………………..76

جدول 5-1: خصوصیات هندسی و الاستیک المان تیر………………………………………………………………………135

جدول5-2 : پارامترهای اندرکنش واندر والس ……………………………………………………………………………….150

جدول6-1: اطلاعات مربوط به مش بندی المان محدود مدل قاب فضایی در نرم افزار ANSYS ……………184

جدول6-2 : مشخصات هندسی نانولوله های کربنی تک دیواره در هر سه مدل …………………………………….185

جدول6-3 : داده ها برای مدول یانگ در هر سه مدل توسط نرم افزار ANSYS …………………………………186

جدول6-4 : داده ها برای مدول برشی در هر سه مدل توسط نرم افزار ANSYS …………………………………187

جدول6-5 : مقایسه نتایج مدول یانگ برای مقادیر مختلف ضخامت گزارش شده …………………………………194

جدول 6-6 : مشخصات صفحات گرافیتی مدل شده با آرایش صندلی راحتی ………………………………………196

جدول 6-7 : مشخصات صفحات گرافیتی مدل شده با آرایش زیگزاگ ……………………………………………..197

جدول 6-8 : مقایسه مقادیر E، G و به دست آمده از مدل های تدوین شده در این تحقیق با نتایج موجود در منابع ……………………………………………………………………………………………………………………………………….202

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فهرست اشکال

عنوان                                                                                                               صفحه

شکل 1-1 : میکروگراف TEMکه لایه های نانو لوله کربنی چند دیواره را نشان می دهد ………………………….4

شکل 1-2 : اشکال متفاوت مواد با پایه کربن ……………………………………………………………………………………..6

شکل 1-3 : تصویر گرفته شده TEM که فلورن هایی کپسول شده به صورت نانولوله های کربنی تک دیواره را نشان می دهد ……………………………………………………………………………………………………………………………….7

شکل 1-4 : تصویر TEM از نانولوله کربنی دو دیواره که فاصله دو دیواره در عکس TEM nm 36/0 می باشد …………………………………………………………………………………………………………………………………………..8

شکل 1-5 : تصویر TEM گرفته شده از نانوپیپاد ……………………………………………………………………………..8

شکل 2-1 : تصویر نانو لوله های تک دیواره و چند دیواره کشف شده توسط ایجیما در سال 1991…………….15

شکل 2-2 : انواع نانولوله: (الف) ورق گرافیتی (ب) نانولوله زیگزاگ (0، 12) (ج) نانولوله زیگزاگ (6، 6) (د) نانولوله کایرال (2، 10) …………………………………………………………………………………………………………..17

شکل 2-3 : شبکه شش گوشه ای اتم های کربن ………………………………………………………………………………18

شکل2-4 : تصویر شماتیک شبکه شش گوشه ای ورق گرافیتی، شامل تعریف پارامترهای ساختاری پایه و توصیف اشکال نانولوله های کربنی تک دیواره ………………………………………………………………………………..19

شکل 2-5 : شکل شماتیک یک نانولوله کربنی چند دیواره MWCNTs ……………………………………………20

شکل 2-6 : نانو پیپاد ……………………………………………………………………………………………………………………21

شکل 2-7 : شکل شماتیک یک نانو لوله که از حلقه ها شش ضلعی کربنی تشکیل شده است …………………22

شکل2-8 : تصویر شماتیک یک حلقه شش ضلعی کربنی و پیوندهای مربوطه………………………………………..22

شکل 2-9 : تصویر شماتیک شبکه کربن در سلول های شش ضلعی …………………………………………………….23

شکل 2-10: توضیح بردار لوله کردن نانو لوله، بصورت ترکیب خطی از بردارهای پایه b , a …………………23

شکل2-11: نمونه های نانولوله های صندلی راحتی، زیگزاگ و کایرال و انتها بسته آنها که مرتبط است با تنوع فلورن ها ……………………………………………………………………………………………………………………………………24

شکل 2-12: تصویر سطح مقطع یک نانو لوله …………………………………………………………………………………..25

شکل 2-13: مراحل آزاد سازی نانو لوله کربن ………………………………………………………………………………..33

شکل 2-14 : مراحل کمانش و تبدیل پیوندها در یک نانو لوله تحت بار فشاری ……………………………………..36

شکل 2-15: نحوه ایجاد و رشد نقایص تحت بار کششی الف: جریان پلاستیک، ب: شکست ترد (در اثر ایجاد نقایص پنج و هفت ضلعی) ج: گردنی شدن نانو لوله در اثر اعمال بار کششی ………………………………………….38

شکل 2-16: تصویر میکروسکوپ الکترونی پیمایشی SEM اعمال بار کششی بر یک نانو لوله …………………39

شکل 2-17: شکل شماتیک یک نانولوله کربنی به عنوان نوک AFM. ……………………………………………….47

شکل2-18 : نانودنده ها ……………………………………………………………………………………………………………….50

شکل 3- 1: آزمایش تخلیه قوس ……………………………………………………………………………………………………56

شکل 3-2 : دستگاه تبخیر/سایش لیزری ………………………………………………………………………………………….58

شکل 3-3 : شماتیک ابزار CVD …………………………………………………………………………………………………60

شکل 3-4 : میکروگرافی که صاف و مستقیم بودن MWCNTs را که به روش PECVD رشد یافته نشان می دهد …………………………………………………………………………………………………………………………………….62

شکل 3-5 : میکروگراف که کنترل بر روی نانو لوله ها را نشان می دهد: (الف)  40–50 nmو (ب). 200–300 nm …………………………………………………………………………………………………………………………………62

شکل 3-6 : نانولوله کربنی MWCNT به عنوان تیرک AFM …………………………………………………………71

شکل 4-1 : تصویر شماتیک ارتباط بین زمان و مقیاس طول روشهای شبیه سازی چند مقیاسی …………………..75

شکل 4-2 : مدل سازی موقعیت ذرات در محیط پیوسته ……………………………………………………………………..77

شکل 4-3 : محدوده طول و مقیاس زمان مربوط به روشهای شبیه سازی متداول ……………………………………..82

شکل 4-4 : تصویر تلاقی ابزار اندازه گیری و روش های شبیه سازی …………………………………………………….82

شکل 4-5 : تصویر شماتیک وابستگی درونی روش ها و اصل اعتبار روش …………………………………………….83

شکل 4-6 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه ……………………………………………85

شکل 4-7 : موقعیت نسبی اتمها در شبکه کربنی برای بدست آوردن طول پیوندها در نانولوله ……………………85

شکل 4- 8 : المان حجم معرف در نانو لوله کربنی …………………………………………………………………………….90

شکل 4- 9 : مدلسازی محیط پیوسته معادل ………………………………………………………………………………………90

شکل 4- 10 : المان حجم معرف برای مدلهای شیمیایی، خرپایی و محیط پیوسته …………………………………….92

شکل4-11 : تصویر شماتیک تغییر شکل المان حجم معرف ……………………………………………………………….92

شکل4-12 : شبیه سازی نانو لوله بصورت یک قاب فضایی ………………………………………………………………..93

شکل4- 13 : اندرکنشهای بین اتمی در مکانیک مولکولی ………………………………………………………………….93

شکل4-14: شکل شماتیک یک صفحه شبکه ای کربن شامل اتم های کربن در چیدمان های شش گوشه ای.96

شکل 4-15: شکل شماتیک گروهای مختلف نانولوله کربنی ……………………………………………………………….97

دانلود با لینک مستقیم


پایان نامه کارشناسی ارشد مکانیک: مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

بانک اطلاعات خواص دارویی و خصوصیات اقلیمی گیاهان دارویی‎ با فرمت ورد(word)

اختصاصی از فی فوو بانک اطلاعات خواص دارویی و خصوصیات اقلیمی گیاهان دارویی‎ با فرمت ورد(word) دانلود با لینک مستقیم و پر سرعت .

از آنجا که انسان جزئی از طبیعت است بطور مسلم برای هر بیماری ، طبیعت گیاه مداوای آن را عرضه کرده است. انسان هر چه به طبیعت نزدیکتر شود، سالم‌تر است و بیشتر عمر می‌کند. به همین دلیل انسان هرچه به طبیعت روی آورد و از نعمات آن بیشتر بهره می‌برد، جهت درمان بیماری خود سریع‌تر ، بهتر و مطمئن‌تر درمان می‌شود. باید گفت که انسان تنها با داروهای شیمیایی مداوا نمی‌شود. همه عوامل طبیعی نقش درمان و دارو نهایتا نقش پیشگیری را در برابر بیماریها دارند. وجود گیاهان دارویی در طبیعت یکی از نعمتهای بزرگ الهی است.این فایل مرجعی بسیار کامل درباره خواص گیاهان دارویی و خصوصیات اقلیمی و نام علمی آنها می باشد. در این مقاله ی 213 صفحه ای، بیش از 100 گیاه مورد برسی قرار گرفته است

فهرست گیاهان :  یونجه، بادام   ، صبرزرد   ، سیب، زردآلو ، آرتیشو ( کنگر فرنگی ) ، مارچوبه ،   آووکادو ، موز ، زرشک ، جو ، ریحان ، چغندر ، سنبل الطیب ( علف گربه ) ، گاوزبان ، بابا آدم ،  هل ، هویج ، فلوس ، بابونه ، نخود ، درچین ، میخک ، نارگیل، قهوه ، گشنیز ، ذرت ، خیار ، زیره سبز ،قاصدک ، خرما ، شوید ، بادمجان ، آقطی سیاه ( انگو کولی )، باقلا، رازیانه  ، شنبلیله ، انجیر ، تخم کتان، خاکشیر، سیر ، کوشاد ( ژانسیان ) ، زنجبیل ، انگور ، گریپ فروت، مامیران کبیر ، فندق ، گیاه دم اسب ، گیاه زوفا ، عناب  ، لوبیا، علف هفت بند، اسطوخودوس ( لاواندر ) ، لیمو ترش ، عدس ، کاهو ، شیرین بیان ، روناس، انبه ختمی ، گزنه ، بلوط – گزعلفی(شیره بلوط) ، جودوسر ( یولاف ) ، زیتون ، پیاز ، پرتقال ، جعفری ، هلو ، بادام زمینی ، گلابی ، نعناع ، پسته ، انار ، سیب زمینی ، به ، ترب و تربچه ، شبدر قرمز ، برنج ، زعفران ، کنجد ، لوبیای سویا ، اسفناج، کدو ، چای کوهی ، آفتاب گردان ، تمبر هندی ، گوجه فرنگی ، زرد چوبه ، شلغم ، شاه پسند وحشی ، گردو ، هندوانه ، توس (غان )


دانلود با لینک مستقیم


بانک اطلاعات خواص دارویی و خصوصیات اقلیمی گیاهان دارویی‎ با فرمت ورد(word)