فرمت فایل : power point (لینک دانلود پایین صفحه) تعداد اسلایدها 20 اسلاید
درجه واکنش :
پاورپوینت درباره آشنایی با سینتیک شیمیایی و آنزیمی
فرمت فایل : power point (لینک دانلود پایین صفحه) تعداد اسلایدها 20 اسلاید
درجه واکنش :
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه13
سینتیک و سینماتیک سه بعدی
در 15 سال گذشته ، پیشرفت های تجاری عمده ای در نرم افزارها و سخت افزارهای سه بعدی بوجود آمده است.
با صرفنظر از اینکه از چه سیستمی استفاده می شود، مرحله جمع آوری داده ها، یک فایل از مختصات طول و عرض و ارتفاع مارکرها در هر زمان است. این مختصات در سیستم مرجع عمومی GRS .
هدف از این فصل این است تا مرحلههایی که این داده های مختصاتی تبدیل به محورهای آناتومی اجزا بدن می شوند را مرور کنیم بطوریکه یک آنالیز سینماتیکی بتواند در یک روش مشابه انجام داده شود .
چندین سیستم مرجع محور وجود دارند که باید در مجموع با GRS ، که قبلا در بالا معرفی شد نشان داده شوند . مارکرهایی که روی هر یک از قسمت ها قرار داده می شوند ، یک سیستم محور مارکر بوجود می اورند که یک سیستم مرجع موضعی ، LRS ، برای هر جزء است. یک LRS ثانویه ، یک سیستم محور است که محورهای اصلی هر یک از اعضا را نشان می دهد به علت استفاده از نشانه های خاص آناتومیکی– اسکلتی در این روش به منظور تعریف محورها ، این سیستم به عنوان سیستم مختصات آناتومیکی نامیده شده است.
به منظور راحتی بر جهت محورهای GRS تاکید خواهیم کرد: x جهت جلو و عقب است ، y محور عمودی (گرانشی) است و z محور چپ و راست (افقی/میانی) است . بنابراین صفحه xz صفحه افقی است و با توجه به تعریف متعامد با محور عمودی است . جهت محورهای GRS با این محورها در صفحه نیرو یکسان است .
برای اینکه مطمئن شویم که این چنین است ، یک سیستم درجه بندی فضایی ( یک فرم فضایی صلب یا یک محور مکانیکی صلب سه بعدی ) بوسیله مارکرها اندازه گیری می شود و روی یکی از صفحات نیرو قرار می گیرد و در طول محور x، zسکوی نیرو ردیف می شود.
موقعیت هر یک از مارکرها نسبت به مبدا صفحه نیرو مشخص می شود و به کامپیوتر داده داده می شود. مبدا هر یک از سکوهای اضافی بوسیله یک دو خم z، x سکوی اولی ثبت می شود.
یک دو خم اضافی در جهتy ضروری خواهد شد اگر آن سکوی اضافی در یک ارتفاع متفاوت از اولی بود ( بواسطه یک آنالیز بیومکانیکی پلکان یا گردش پلکان ضروری خواهد بود) . تعداد زیادی از آزمایشگاه ها یک نظم ثابت از دوربین ها دارند ، بنابراین هیج نیازی به کالیبره کردن GRS در هر روز نیست.
در آزمایشگاههای بزرگ کلینیکی و همینطور سیستمی که در فصل قبل توضیح داده شد نیز این چنین است. ( نمودار 2.12 را ببینید .) در تعداد زیادی از موقعیت های پژوهش دوربین ها بازچیده می شوند تا به بهترین روش حرکت جدید را ضبط کنند.
بنابراین به درجه بندی جدید GRS نیاز دارد. وقتیکه درجه بندی کامل شد دوربین ها نمی توانند حرکت داده شوند و توجه بیشتری باید شود تا مطمئن شویم آنها بطور تصادفی جابجا نشده باشند.
دانشجویان به چندین بخش در فصل6 ارجاع داده می شوند و از آنها خواسته می شود دوباره بخش 6.2.6 تا انتهای 6.2.7.2 را ببینند. این بخش ها جابجایی سیستم های مرجع و بردارهای سرعت برای سیستم های دو بعدی و سه بعدی را دربرمی گیرند. نمادهایی که در این بخش ها معرفی شده اند در این فصل توضیح داده می شوند.
در هر عضو سیستم محور آناتمی با مبدا آن در مرکز جرم عضو (COM) تنظیم می شود و معمولا محور y اصلی آن در امتداد محور طولی عضو یا موقعیت اعضا مانند لگن خاصره در طول یک خط ، بوسیله مارکرهای اختصاصی اسکلتی از قبیل PSIS وASIS معیین می شود.
سیستم های محوری موضعی دیگری روی آن عضو که یک مجموعه از مارکرهای سطحی را استفاده میکند، شکل داده می شود.
یک مجموع از دو تبدیل ضروری است تا از GRS به سیستم محور مارکر و از آن مارکر به سیستم محور آناتمی بدست آیند. نمودار 7.1 نشان می دهد که چگونه یکی از این دوران ها انجام می شود . سیستم محور x,y,z نیاز دارد تا نسبت به سیستمی که بوسیله مشخص شده است، دوران کند.
تعداد زیادی توالی دوران ممکن است اما در اینجا ما از توالی متداولx-y-z crdan استفاده می کنیم که این بدین معنی است که ما ابتدا پیرامون محور x و دوم پیرامون محور y جدید و در نهایت پیرامون محور z جدید دوران می کنیم.
اولین دوران پیرامون محور x است ت بدست آید. چون ما پیرامون محور x دوران کرده ایم ، x تغییر نخواهد کرد و در حالی که محور y به y' تغییر می کند و محور zبه z' تغییر می کند.
دوران دوم پیرامون محور جدید است تا بدست آید. چون این دوران پیرامون محور بوده است
آخرین دوران پیرامون محور جدید است تا مطلوب بدست اید.
فرض می کنیم ما یک نقطه با مختصات در سیستم محور اصلی ,y,z x داریم که همان نقطه در سیستم محور مختصات را خواهد داشت.
مبنی بر دوران :
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:30
فهرست مطالب
مقدمه:
آزمایشات:
پارامترهای فرآیند:
ترکیب شیمیایی گاز:
دما:
لایه زیرین Substrate:
فرآیند آزمایش:
نتایج
وبحث
(وابستگی ترشوندگی و واکنش به زمان)
واکنش مستقیم در مقابل واکنش غیر مستقیم
اثرFeo
نتیجه گیری
ترشوندگی گرافیت تا سرباره وسینتیک واکنش
قسمت اول، سینتیک و مکانیسم واکنش احیای Feo مذاب
w.Siddigi,B.Bhoi,R.K.Paramguru, V.sahaj walla, and O.Ostrvski این نوشته، نتایجی در رابطه با سینتیک ومکانیسم کاهش Feo با گرافیت ارائه می دهد، این اطلاعات از تحقیقات تجربی(آزمایشی) در مورد ترشوندگی گرافیت با سرباره مذاب حاوی Feo بدست آمده اند. نرخ احیا Feo با اندازه گیری میزان گاز Co حاصل از کاهش Feo تعیین می شود. وآزمایش ها با تجهیزات یکسانی در روش قطره چبنده انجام می گیرد.Sessile drop opparatos واکنش احیاء با تماس مستقیم سرباره و گرافیت شروع می شود. Co تولید شده و به درون قطره سرباره مذاب پخش می شودو با عث کف کردن سرباره می شود احیاء بیشتر Feo اغلب از طریق احیا غیرمستقیم ادامه می یابد. مشخص شده است که نرخ احیا به میزان Feo ابتدایی بستگی دارد.
افزایش دما ،نرخ واکنش بالا می برد. واکنشی با انرژی اکیتواسیون 112.18 kg mol ای نتایج نشان میدهند که احتمالا، انتقال Feo به فاز سرباره مذاب آهسته ترین مرحله است. (در زمانی که کار انجام می شد، Dr,Dr,Mr,Dr در مدرسه علوم مهندسی ،دانشگاه sydney 2.52 ,New svth wales استرالیا بودند و Dr در آزمایشگاه محلی f510B Bhrbonewar هند بوده است. نوشته در 1999 Dec 16 رسید و در 20 April 2000 پذیرش شد.
2000 lom commuincation Ltd.
مقدمه:
نسل کنونی فرآیند حمام مذاب برای تولید آهن، به میزان زیادی به بر هم کنش سرباره و کربن بستگی دارد، چرا که (N%40) آهن با زغال نیمسوز پراکنده در فاز سرباره احیا می شود.
بنابراین فصل مشترک کربن سرباره مهم فرض می شود.
در آن جا باید شوندگی مناسبی بین سطح کربن جامد و سرباره مایع ایجاد شود تا تماسی مناسب برای ایجاد واکنش داشته باشیم.
همچنین سینتیک و مکانیسم واکنش نیز به این فصل مشترک وابسته است.
در این نوشته، مولفین حاضر، ترشوندگی گرافیت با سرباره Cao,sio2-Al2o3 –Feo-Mgc را با استفاده از تکنیک قطره چسبیده مورد مطالعه قرار دادند
تاثیر پارامترهای مختلی از جمله ،ترکیب سرباره (Fe,Mg,sio2) دما و نوع گرافیت برترشوندگی تحقیق شد. مشخص شد که دو مورد مهم تر اثرگذار بر تر شوندگی، میزان Feo
دو سرباره ودما هستند. تساوی 1 به عنوان واکنش اصلی در رابطه با ترشوندگی سطح گرافیت با سرباره مذاب حاوی Feo ذکر می شود:
Feo+c=Fe+Co
ترشوندگی به دو کلاس گسترده ترشوندگی فیزیکی وشیمیایی تقسیم می شود. در ترشوندگی فیزیکی نیروهای فیزیک بازگشت پذیر مثل وان در والنس ونیروهای پراکندگی گسترش انرژی جذابه لازم بریا تر شدن سطح را فراهم می کند. در حالی که در ترشوندگی شیمیایی، واکنشی در فصل مشترک جامد ،مایع صورت می گیرد که به همراه انتقال جرم ،علت اصلی ترشوندگی هستند.
مورد دوم که به عنوان واکنش ترشوندگی نیز مشخص می شود، موضوع را با فرایضی شرح می دهد.
در حال حاضر بنا به اطلاعات مولف، تئوری کاملا مناسبی برای شرح واکنش ترشوندگی وجود ندارد، اگر چه نوشته ها [4-12] هستند که به واکنش ترشوندگی اغلب برای فصل مشترک فلز مذاب ماده دیرگذار پرداخته اند.
ابزار اندازه گیری پذیرفته شده ترشوندگی برای قطره مایع بر روی سطح جامد، زاویه تماس است. برای یک سیستم بدون واکنش، پالانس نیروهای کشش سطحی تساوی 10vng را بصورت زیر نتیجه می دهند :
به ترتیب نیروهای کششی سطحی بخار/جامد، بخار/مایع، مایع/جامد هستند. وقتی پارامتر ترشوندگی بزرگتر از صفر باشد. انتظار می رود سیستم ترشونده باشد. وقتی واکنشی در فصل مشترک رخ می دهد، انرژی آزاد واحد سطح و در واحد زمان تغییر می کند و همچنین ترشوندگی را تسهیل می کند.
در این مورد تساوی loung 2 باید برای این محرک تصحیح شود. به طبق نوشته بیان [10]Laurent ،کمترین زاویه ممکن در سرسیستم شامل واکنشی با رابطه زیر مشخص می شود
زاویه تماس مایع بر روی،زیرین در نبود هیچ واکنش است.
مقدمه
در حالت کلی سینتیک شیمیایی را میتوان علم مطالعه سیستمهای ناظر بر تجزیه شیمیایی و یا تغییر حالت مولکولها دانست. به عبارت دیگر سینتیک را میتوان علم مکمل ترمودینامیک دانسته و سیستمهایی را که توزیع انرژی آنها با زمان تغییر مینماید مطالعه کرد. نظریههایی که اثرات متقابل شیمیایی را توجیه میکنند بطور گستردهای بر اساس نتایج تجربی پایه گذاری شدهاند که با روشهای ترمودینامیکی و سینتیکی به دست میآیند.
نگاه اجمالی
با یک نگرش سطحی میتوان مشاهده نمود که برخی از واکنشهای شیمیایی آنی بوده و تعدادی کند یا بینهایت کند هستند. همچنین شدت بعضی از واکنشها در آغاز زیاد است، رفته رفته آهسته میگردند، برعکس برخی از واکنشها به کندی شروع شده و سپس شتاب میگیرند، سینتیک عامل زمان را در واکنشهای شیمیایی مطرح و مورد بحث قرار میدهد.
تاریخچه
از نظر تاریخی مطالعه سرعت واکنشها یکی از قدیمیترین موضوعات شیمی فیزیک بوده است. و نزل در سال 1777 سرعت انحلال فلزات در اسیدها را مطالعه کرد. ویلهمی در سال 1850 هیدرولیز بوسیله اسیدها را مورد بررسی قرار داد و به این نتیجه رسید که سرعت واکنش هیدرولیز ساکاروز متناسب با غلظت ساکاروز تجزیه نشده است.
ویلهمی را میتوان پایه گذار سینتیک نامید. درسال 1862 برتلو و سن ژیل نیز نتایج مشابهی روی هیدرولیز استرها در محیط اسیدی داشتند، سرانجام درسال 1863 گولدبرگ و واگ نتایج فوق را تعمیم داده و به صورت قانون اثر غلظتها بیان کردند.
مطالعات اولیه سینتیک
اولین مطالعات در سینتیک شیمیایی مربوط به اندازه گیری سرعت واکنشها بوده و برای رسیدن به هدف اصلی با توجیه این سرعتها به شناخت مکانیسم کامل واکنش مورد مطالعه پی میبریم. البته از آنجا که سرعت اندازه گیری شده یک حالت آماری متوسط مولکولهای شرکت کننده در واکنش میباشد، سینتیک شیمیایی اطلاعی از حالت انرژیتیکی یا وضع فضایی مولکولها را بطور جداگانه ارائه نمیدهد ولی با این وصف مطالعه جنبشی واکنش های شیمیایی در تفکیک مکانیسم های پیچیده به مراحل ساده ، دارای توانایی و قدرت قابل توجهی میباشد.
مکانیسم کلی واکنشهای پیچیدهای که واکنشگرها تغییرات مرحلهای انجام میدهند، تنها با مطالعه سینتیکی سرعت یعنی فرایند حاکم بر واکنش از طریق مطالعه سینتیکی قابل تشریح میباشد.
استفاده همزمان از عوامل ترمودینامیکی و سینتیکی
ترمودینامیک شیمیایی هم مانند سینتیک شیمیایی شاخه مهمی از شیمی فیزیک است. در ترمودینامیک عامل زمان ، در کار نیست و در آن از تعادل و حالت ابتدایی و انتهایی سیستم بحث میشود. بی آنکه از سرعت رسیدن به تعادل سخن گفته شود. در بیشتر موارد عملی اکثر اطلاعات مورد نیاز با استفاده همزمان از عوامل ترمودینامیکی و سینتیکی بدست میآید. برای مثال در فرایندهای برای تهیه آمونیاک داریم:
زمانی که واکنش گرمازا باشد طبق اصل لوشاتلیه تهیه آمونیاک در فشار بالا و دمای پایین امکانپذیر است. ولی عملا در دمای سرعت واکنش به اندازهای کند است که به عنوان یک فرایند صنعتی مقرون به صرفه نمیباشد. لذا اگر چه در فرایند هابر با استفاده از فشارهای زیاد تعادل در جهت تولید آمونیاک پیشرفت میکند، عملا در حضور کاتالیزور و دمای (عوامل ترمودینامیکی) سرعت رسیدن به تعادل به مراتب افزایش مییابد. در نتیجه برای مشخص نمودن شرایط انجام این واکنش از عوامل ترمودینامیکی و سینتیکی استفاده میشود.
تفاوتهای سینتیک و ترمودینامیک
علم ترمودینامیک بیشتر مبتنی بر تغییر انرژی و آنتروپی است که معمولا همراه با تغییر در سیستم میباشد و با استفاده از انرژی آزاد یک واکنش و همچنین ثابت تعادل آن امکان انجام یا عدم انجام یک واکنش شیمیایی را پیشبینی میکند. اما نتایج ترمودینامیکی به هیچ وجه نمیتواند سرعت تغییرات شیمیایی و یا مکانیسم تبدیل واکنش دهندهها اطلاعاتی به ما بدهد. به عنوان مثال اکسیژن و نیتروژن موجود در جو زمین میتوانند با آب اقیانوسها وارد واکنش شده و اسید نیتریک رقیق تولید کنند.
بر اساس اطلاعات ترمودینامیکی ، این واکنش به صورت خودبهخودی میتواند انجام شود. اما طبق اطلاعات سینتیکی خوشبختانه سرعت آن خیلی کم میباشد. تفاوت مهم دیگر بین سینتیک و ترمودینامیک این است که طبق اصول اساسی ترمودینامیک مقدار ثابت تعادل برای واکنشها مستقل از مسیری است که واکنش دهندهها را به فراورده تبدیل میکند اما در سینتیک مسیر واکنش بسیار اهمیت دارد، زیرا کلیه مراحل و مکانیسم واکنشهای شیمیایی را تشکیل میدهد.
تعریف سینتیک شیمیایی
سینتیک شیمیایی عبارت از بررسی سرعت واکنشهای شیمیایی است. سرعت یک واکنش شیمیایی را عوامل معدودی کنترل میکنند. بررسی این عوامل ، راههایی را نشان میدهد که در طی آنها ، مواد واکنشدهنده به محصول واکنش تبدیل میشوند. توضیح تفضیلی مسیر انجام واکنش بر مبنای رفتار اتمها ، مولکولها و یونها را "مکانیسم واکنش" مینامیم.
در ترمودینامیک و الکتروشیمی ، کارها پیشبینی انجام واکنش بود؛ اما مشاهدات صنعتی ، نتایج ترمودینامیک شیمیایی را به نظر تایید نمیکند. در این حالت نبایستی فکر کنیم که پیش بینی ترمودینامیک اشتباه بوده است؛ چون ترمودینامیک کاری با میزان پیشرفت واکنش و نحوه انجام فرایندها ندارد. نظر به اهمیت انجام فرایندها از نظر بهره زمانی ، لازم است که عامل زمان در بررسی فرایندها وارد شود.
به عنوان مثال ، کاتالیزورهای بخصوصی به نام "آنزیمها" در تعیین این که کدام واکنش در سیستمهای زیستی با سرعت قابل ملاحظه به راه بیافتد، عواملی مهم هستند. مثلا مولکول "تری فسفات آدنوزین" (Adnosine triphosphate) از لحاظ ترمودینامیکی در محلولهای آبی ناپایدار بوده و باید هیدرولیز گردیده و به "دی فسفات آدنوزین" و یک فسفات معدنی تجزیه شود. در صورتی که این واکنش در غیاب آنزیمی ویژه ، "آدنوزین تری فسفاتاز" ، بسیار کند میباشد.
در واقع همین کنترل ترمودینامیکی سمت و سوی واکنشها به همراه کنترل سرعت آنها توسط آنزیمهاست که موجودیت سیستمی با تعادل بسیار ظریف ، یعنی سلول زنده را مقدور میسازد. بیشتر واکنشهای شیمیایی طی مکانیسمهای چند مرحلهای صورت میگیرند. هرگز نمیتوان اطمینان داشت که یک مکانیسم پیشنهاد شده ، بیانگر واقعیت باشد. مکانیسم واکنشها تنها حدس و گمانهایی بر اساس بررسیهای سینتیکیاند.
سرعت متوسط واکنش در یک بازه زمانی بیان کننده میانگین میزان پیشرفت واکنش در آن بازه زمانی است. برای تعیین سرعت متوسط یک واکنش سرعت متوسط تولید یا مصرف یکی از مواد مربوط به آن واکنش مشخص می شود. اگر واکنش را به صورت در نظر بگیریم سرعت متوسط سرعت مصرف واکنش دهنده A و سرعت متوسط تولید فرآورده B نشان داده می شود که :
سرعت متوسط معمولا بر حسب واحد mol/s (مول بر ثانیه) mol/min (مول بر دقیقه) گزارش می شود.
چون با گذشت زمان کوچکتر از صفر (منفی) است و سرعت واکنش کمیتی مثبت می باشد به همین دلیل در رابطه یک منفی وجود دارد که همواره کمیتی مثبت شود.
اگر ماده مورد نظر به فرم گازی یا محلول باشد , به جای تغییر تعداد مول ها می توان تغییر غلظت مولی را در نظر گرفت پس می توان نوشت :
سرعت متوسط واکنش نسبت به تغییر غلظت مولی هر ماده به صورت mol/l.s و یا به صورت mol/L.min گزارش می شود.
سرعت متوسط واکنش از تقسیم سرعت متوسط تولید فرآورده یا مصرف واکنش دهنده بر ضریب استوکیومتری واکنش موازنه شده به دست می آید مثلا :
نکته : هر گاه واکنش دهنده ها و یا محصولات یک واکنش به حالت گاز باشند می توان سرعت واکنش را بر حسب تغییر حجم نسبت به زمان بیان کرد . در این صورت سرعت بر حسب ……, ml/min , L/s , L/min گزارش می شود.
دو نظریه مهم واساسی که واکنشهای شیمیایی را در سطح مولکولی )میکروسکوپی) بررسی میکند عبارتند از:
1) نظریه برخورد
2) نظریه حالت گذار
نظریه برخورد
مطابق با این نظریه، برای انجام یک واکنش باید بین ذره های واکنش دهنده برخورد موثر صورت گیرد.
برخورد موثر برخوردی است که دارای دو ویژگی مهم زیر باشد:
1) جهت مناسب برخورد
2) دارا بودن انرژی کافی ذره ها هنگام برخورد
تعداد برخوردها
افزایش غلظت باعث افزایش تعداد برخورد ها و در نتیجه افزایش سرعت واکنش میشود. طبق نظریه برخورد سرعت واکنش به تعداد برخوردهای بین ذره های واکنش دهنده در واحد حجم و زمان بستگی دارد.
انرژی ذره ها هنگام برخورد
در میان برخوردهای متعدد میان ذره ها فقط تعداد محدودی منجر به انجام واکنش می شوند. زیرا همگی آنها دارای انرژی کافی نیستند.در واقع انرژی ذره ها هنگام برخورد باید به حدی باشد که بتواند پیوندهای موجود میان مواد واکنش دهنده را سست کند. این انرژی را "انرژی فعالسازی" گویند.
جهت گیری مناسب مولکولهای برخورد کننده
برای اینکه برخورد بین ذره های واکنش دهنده به انجام واکنش و تولید فرآورده بیانجامد باید این ذره ها درجهت مناسبی به یکدیگر نزدیک شده و برخورد کنند. شکل زیر برخوردهای با جهت گیری مناسب و نامناسب را در واکنش مقابل نشان میدهد.
چگونگی انجام یک واکنش
برای انجام دادن یک واکنش شیمیائی باید بین مواد واکنش دهنده برخوردهای موثر و کارا صورت گیرد. درواقع ذره های واکنش دهنده دارای حرکات نامنظم دائمی هستند که این حرکات باعث برخوردهائی میشود. اگر این برخورد ها جهت و راستای مناسب داشته و همچنین انرژی و شدت لازم را داشته باشد واکنش انجام می گیرد.
انرژی فعالسازی
همانطور که گفته شد برای اینکه یرخورد بین ذره ها مؤثر باشد باید علاوه بر داشتن جهت و راستای مناسب انرژی کافی نیز داشته باشد. در واقع این انرژی جهت سست کردن پیوندهای موجود در مواد واکنش دهنده برای تبدیل شدن به فرآورده ها بکار می رود. از این انرژی بعنوان ((انرژی فعالسازی Ea ))نام برده می شود. در واقع انرژی فعالسازی مانند یک سد است که مانع انجام واکنش شده و باعث کندی انجام آن میشود.
نظریه حالت گذار
در نظریه برخورد امکان بررسی واکنش ساده در فاز گازی میسر است و برای توجیه واکنشهای در حالت محلول نمیتوان از آن استفاده کرد زیرا در حالت محلول فاصله بین ذره های واکنش دهنده کم است و نمیتوان مانند فاز گازی ذره ها را جدا از یکدیگر و مستقل در نظر گرفت. از ظرف دیگر با استفاده از این نظریه نمیتوان انرژی فعالسازی واکنش را محاسبه کرد. به همین جهت نظریه "حالت گذار" مطرح شد. طبق این نظریه در فاصله تبدیل مواد واکنش دهنده به فرآورده ها، ترکیباتی حد وسط و ناپایدار تشکیل میشوند که "حالت گذار یا پیچیده فعال" نامیده میشوند.
دو اشکال مهم نظریه برخورد عبارتند از:
1) در نظریه برخورد ذره های واکنش دهنده بصورت کره هایی سخت در نظر گرفته میشوند. در صورتیکه میدانیم ذره های واکنش دهنده بر یکدیگر اثر میگذارند
2) در نظریه برخورد فقط حرکت های انتقالی ذره های واکنش دهنده در نظر گرفته میشوند، در صورتیکه حرکت های چرخشی و ارتعاشی ذره های واکنش دهنده نیز در نحوه انجام واکنش نقش دارند.
پیچیده فعال
مجموعه ایست حد وسط مواد واکنش دهنده و محصولات که در آن پیوندهای اولیه در حال سست شدن و پیوندهای جدید در حال تشکیل شدن هستند.
در نمایش ساختار پیچیده فعال، پیوندهای در حال شکسته شدن و یا تشکیل شدن را با نقطه چین نشان میدهند.
پیچیده فعال ذره ناپایداری با سطح انرژی بالاست که عمر کوتاهی دارد و به محض تشکیل شدن به فرآورده ها یا واکنش دهنده ها تجزیه میشود. به همین جهت نمیتوان آنرا در حین واکنش جداسازی و شناسایی کرد.
سازوکار (مکانیسم) واکنش
بررسی جزء به جزء مراحل انجام یک واکنش یا بررسی فرآیند انجام شده در سطح ذره ای را سازوکار واکنش گویند. یکی از اهداف سینتیک شیمیایی چگونگی انجام یک واکنش در سطح ذره ای است. در واقع برخی از واکنشها طی چند مرحله انجام میشوند که واکنش کلی از جمع مراحل تشکیل دهنده سازوکار بدست می آید.
در واقع میتوان واکنش های شیمیایی چند مرحله ای رابه یک مسابقه دوی امدادی تشبیه نمود. در چنین مسابقاتی چند دونده باکمک هم یک مسافت مشخص شده را بایدطی کنند. فرض کنید یکی از این دونده ها مسیر مربوط به خود را بسیار آرام طی کند. طبیعتا نتیجه نهایی مسابقه این گروه تحت تأثیر سرعت این دونده بوده و نمیتواند از آن سریعتر باشد. بنابراین همواره مرحله آهسته تر تعیین کننده سرعت واکنش کلی می باشد.
در واکنشهای تعادلی سرعت مصرف مواد واکنش دهنده (واکنش رفت) به مرور کم میشود و سرعت مصرف محصولات یعنی واکنش برگشت بتدریج زیاد میشود.
کاتالیزگر
کاتالیزور ماده ای است که سرعت یک واکنش شیمیایی را افزایش می دهد بدون آنکه خود در جریان واکنش مصرف شود.
ریشه لغوی
کاتالیزور از دو صفت کاتا و لیزور تشکیل شده است. در زبان یونانی "کاتا" به معنای پائین ، افتادن ، یا پائین افتادن است و "لیزور" به معنی قطعه قطعه کردن میباشد. در برخی زبانها کاتالیزور را به معنی گردهم آوردن اجسام دور از هم معرفی کرده اند.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 24 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:8
فهرست:.
سینتیک شیمیایی
در حالت کلی سینتیک شیمیایی را میتوان علم مطالعه سیستمهای ناظر بر تجزیه شیمیایی و یا تغییر حالت مولکولها دانست. به عبارت دیگر سینتیک را میتوان علم مکمل ترمودینامیک دانسته و سیستمهایی را که توزیع انرژی آنها با زمان تغییر مینماید مطالعه کرد. نظریههایی که اثرات متقابل شیمیایی را توجیه میکنند بطور گستردهای بر اساس نتایج تجربی پایه گذاری شدهاند که با روشهای ترمودینامیکی و سینتیکی به دست میآیند.