فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق مطالعه و بررسی پردازنده های DSP و امکان سنجی یک سامانه ی حداقل جهت کار با آنها

اختصاصی از فی فوو دانلود تحقیق مطالعه و بررسی پردازنده های DSP و امکان سنجی یک سامانه ی حداقل جهت کار با آنها دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق مطالعه و بررسی پردازنده های DSP و امکان سنجی یک سامانه ی حداقل جهت کار با آنها


دانلود تحقیق مطالعه و بررسی پردازنده های DSP و امکان سنجی یک سامانه ی حداقل جهت کار با آنها

چکیده:
دراین تحقیق مراحل طراحی یک سیستم دیجیتال و کاربردهای آن شرح داده شده است.

          در فصل اول با مشخص کردن نیازهای هر سیستم پردازشگر دیجیتال و مشخصات پردازنده های DSP  لزوم استفاده از این نوع پردازنده ها، بیان شده است.

         در فصل دوم به معرفی پردازنده های DSP و مقایسه آنها از جهات گوناگون پرداخته شده است و اجزای جانبی آنها برای تولید سیگنال های خارجی و ارتباط با محیط خارج مورد بررسی قرار گرفته است. پس از معرفی کارت های آموزشی و صنعتی با استفاده از مهندسی معکوس امکانات مورد نیاز برای طراحی یک سامانه حداقلی بیان شده است.

          در فصل سوم با معرفی انواع نرم افزارهای پردازش سیگنال ها به صورت دیجیتال چگونگی یکپارچه کردن سیستم، به کمک دستورات پیوند دهنده شرح داده شده است که پس از این مرحله سیستم
آماده ی تحویل به مشتری است.

          برای بیان نقش پردازنده های DSP در زندگی روزمره ، چندین مثال از کاربردهای بیشمار پردازش دیجیتال در فصل چهارم آورده شده است. این کاربرد ها را می توان به دو دسته آنالیز/ فیلتر اطلاعات و فرآیندهای کنترلی تقسیم بندی کرد. بنابراین هر کاربرد به سخت افزار و نرم افزار خاصی نیاز دارد که در این مجموعه تا حدودی معرفی شده اند.

فصل اول :

مشخصات عمومی پردازنده های DSP


مقدمه:
پردازش سیگنال های دیجیتال با استفاده از عملیات ریاضی قابل انجام است. در مقایسه، برنامه نویسی و پردازش منطقی روابط، تنها داده های ذخیره شده را مرتب می کند. این بدان معنی است که کامپیوترهای طراحی شده برای کاربردهای عمومی و تجارتی به منظور انجام محاسبات ریاضی، مانند الگوریتم های انجام تحلیل فوریه و فیلتر کردن مناسب و بهینه نیستند. پردازشگرهای دیجیتال وسایل میکروپروسسوری هستند که به طور مشخص برای انجام پردازش سیگنال های دیجیتال طراحی شده اند. پردازنده های DSP دسته ای از پردازنده های خاص می باشند که بیشتر برای انجام بلادرنگ پردازش سیگنال های دیجیتال استفاده می شوند.
این پردازنده ها توانایی انجام چندین عملیات همزمان در یک سیکل دستورالعمل شامل چندین دسترسی به حافظه، تولید چندین آدرس با استفاده از اشاره گرها و انجام جمع و ضرب سخت افزاری به طور همزمان را دارا می باشند و سرعت بالای آن ها نیز به واسطه این ویژگی ها است. این وسایل به میزان بسیار زیادی در دهه اخیر رشد کرده اند و کاربردهای متنوعی از دستگاه های تلفن سیار تا ابزارهای علمی پیشرفته پیدا کرده اند. همچنین بعضی قابلیت اجرای منطق ممیز شناور (Floating point) به صورت سخت افزاری را دارند. در صورتی که سیگنال در بازه دینامیکی بزرگی متغیر با زمان باشد، این قابلیت بسیار مفید می باشد. اگر نمونه ها در زمان بین نمونه برداری ها نیاز به پردازش با سرعت بالا داشته باشند می توان از پردازنده های عملکرد بالا استفاده نمود. در این حالت پردازنده باید در سریع ترین زمان ممکن پردازش را به پایان برساند که این نیازمند کم بودن زمان سیکل  دستورالعمل در پردازنده می باشد. از دیدگاه هزینه، ابعاد و طراحی آسان، تجهیزات جانبی پردازنده بسیار مهم می باشند.         
تجهیزات معمول روی پردازنده ها، پین های ورودی / خروجی، مدارهای واسط سریال و موازی، مبدل دیجیتال به آنالوگ (DAC) و مبدل آنالوگ به دیجیتال (ADC) می باشند. لحاظ کردن فاکتورهای فوق در طراحی و ساخت DSPها، موجب شده است که DSP های متنوعی موجود باشند. بدیهی است در چنین پردازشی باید بتوان اطلاعات نهفته در سیگنال را نیز استخراج کرد.    
1-1) تحلیل سیستم های DSP :
سیستم نمونه DSP در شکل‌(1-1) نشان داده شده است. همان گونه که دیده می شود این سیستم ازسه بخش اصلی تشکیل گردیده است. بخش ابتدایی برای آماده سازی سیگنال و تبدیل آن به نوع دیجیتال و بخش انتهایی که نتایج حاصل از پردازش دیجیتالی را دوباره به شکل اولیه تغییر می دهد و قسمت مرکزی که پردازشگر دیجیتال را برای اجرای یک الگوریتم، یک برنامه و یا مجموعه ای از محاسبه های منطقی – ریاضی تشکیل می دهد. واحدهای ابتدایی و انتهای سیستم فوق مورد بحث ما نمی باشند و در این فصل به طور عمده به بخش اصلی پردازشگر پرداخته می شود.[1]
 


شکل (1-1) : دیاگرام بلوکی سیستم DSP نوعی[1]

اولین نکته قابل توجه این است که چگونه سیستم DSP طراحی می شود؟ چگونگی و روش طراحی سیستم را
می توان در شکل‌(1-2)‌ مشاهده کرد. اولین قدم در این طراحی، تحلیل سیگنال ورودی و تعیین مشخصات آن مانند حداقل و حداکثر دامنه، پهنای باند، محتوای طیفی سیگنال و حدود تغییرات، نسبت سیگنال به نویز (SNR) آن است.
همان طور که سیگنال اصلی آنالوگ باشد، اولین مرحله، پیش پردازش سیگنال و تبدیل آن به شکل دیجیتالی است. میزان و نوع تقویت کننده ورودی، طراحی فیلتر ضدهمپوشانی، حداقل نرخ نمونه برداری و در نهایت طراحی مبدل آنالوگ به دیجیتال در مهمترین موارد این مرحله از طراحی سیستم پردازشگر دیجیتالی است.
سومین مرحله از طراحی سیستم پردازشگر، طراحی نرم افزاری – سخت افزاری پردازشگر دیجیتال است. محتوای طیفی سیگنال و SNR سیگنال ورودی و نیز مشخصات مورد نیاز در خروجی عملیات پردازش که می تواند آشکارسازی مولفه های فرکانس باشد و یا ممکن است بهبود خصوصیات SNR سیگنال مد نظر باشد، تابع انتقال سیستم DSP و الگوریتم های محاسبه آن را تعیین می کند.
در پردازش زمان – حقیقی پهنای باند سیگنال، سرعت پردازش و میزان بار پردازشی میان سخت افزار و نرم فزار را تعیین می کند. اکنون این سوال اساسی قابل مطرح است که تفاوت پردازشگرهای DSP و میکروپروسسورها چه هستند؟ همان طور که می دانیم کامپیوترهای دیجیتال بر مبنای میکروپروسسورها کار می کنند که با اجرای مراحل منطقی در آن ها، محاسبه و الگوریتم هایی انجام می یابد.    
اما نوع محاسبه ها و سرعت انجام آن ها بسیار پایین تر از انتظاراتی نظیر انجام روباتیک، کنترل سریع ماشین ها، استخراج سریع پارامترها از سیگنال های زمان – حقیقی و امثال آن است. ولی به هر حال در دهه های اخیر نشان داده شده است که کامپیوترها به میزان بسیار زیادی در دو زمینه مدیریت و کار با داده، مانند پردازش متن ، مدیریت پایگاه داده  و محاسبه های ریاضی مورد استفاده قرار می گیرد.
همه میکروپروسسورها کم و بیش هر دو وظیفه فوق را می توانند اجرا کنند، ولی بسیار مشکل و یا گران است که بتوان وسیله ای داشت که برای هر دو وظیفه بهینه باشد.[1]
    


 

شکل( 1-2): روش طراحی سیستم [1] DSP

برای بررسی و تایید عملکرد سیستم پیشنهادی، ابتدا سیگنال ورودی و مدل پردازش شبیه سازی نرم افزاری
تعیین می گردد. سپس با اطلاعات اولیه و تایید نهایی گراف جریان سیستم از شبیه ساز نرم افزاری استخراج گردیده که مبنای پیاده سازی سخت افزاری – نرم افزاری پردازشگر دیجیتالی قرار می گیرد.
مصالحه زیادی در طراحی سخت افزاری، مانند اندازه مجموعه دستورالعمل ها و تعداد وقفه ها  میان آن ها انجام گردیده است. همچنین، مسائل بازاری و تجاری، نظیر هزینه ی توسعه و ساخت، رقابت و طول عمر محصولات از اهمیت فوق العاده ای برخوردارند. این ملاحظات موجب بروز میکروپرسسورهای پنتیوم  شد.
به طریق مشابه DSP ها نیز برای محاسبه های ریاضی در پردازش سیگنال های دیجیتال طراحی شدند که سرعت اجرای بیشتر الگوریتم های DSP تقریبا به طور کامل با تعداد ضرب – جمع های مورد نیاز محدود می شوند.    
علاوه بر اجرای محاسبه های ریاضی با سرعت زیاد، DSP ها باید دارای توانایی پیشگویی زمان اجرا باشند.
بیشتر DSP های مورد استفاده در کاربردهای مختلف به صورت پیوسته ای عمل پردازش را انجام داده، بدون این که شروع و خاتمه تعریف شده ای داشته باشند و متناسب با سرعت مورد نیاز در کاربرد عمل می کنند.
دلایل متعددی وجود دارد که سرعت سیستم DSP مورد طرح بیش از حد نیاز نباشد، زیرا با افزایش آن هزینه، مصرف توان و پیچیدگی طرح نیز افزایش می یابد. این دلایل اطلاعات درستی از زمان اجرای پردازش را ضروری می سازد تا هم وسیله مناسب انتخاب شود و هم الگوریتم های مورد استفاده به نحو صحیحی طراحی شوند.
 

 

 

فهرست مطالب
 چکیده      ز
فصل اول : مشخصات عمومی پردازنده های DSP     1
1-1) تحلیل سیستم های DSP     2
1-2) معماری پردازشگرهای دیجیتال     7    
1-3) مشخصات پردازشگرهای DSP    11
1-4) بهبود کارایی پردازنده های DSP معمولی     15
1-5) ساختار SIMD     16
فصل دوم : معرفی پردازنده های DSP و سخت افزار لازم جهت کار با آنها    20
2-1) مقدمه    21
2-2) خانواده ی پردازنده های Texas Instrument     24
2-2-الف( خانواده ی TMS320C2000    29
2-2-ب ( سری C5000    31
2-2-ج( سری C6000    33
2-3) تجهیزات سخت افزاری جهت کار با پردازنده های دیجیتال     38
2-3- الف( نحوه ی راه اندازی و تست اولیه بورد های DSK     42
2-3-ب) EVM     43
2-3-ج) DVEM     44
2-3- د) بورد های TDK    45
2-4) خانواده ی پردازنده های  Motorola   یا به عبارتی Free scale    49
2-4- الف) سری  DSP56000    49
2-4-ب) سری DSP56100       49
2-5) خانواده ی پردازنده ی Analog Devices    53
2-5- الف) پردازنده های سری BLACFIN    54
2-5- ب) پردازنده های سری SHARC    56
2-5- ج) پردازنده های سری Tiger SAHRC    58
فصل سوم : معرفی نرم افزارهای DSP     60
3-1) مقدمه    61
3-2) تقسیم بندی انواع نرم افزارهای DSP    62
3-3) مقدمه ای بر ابزارهای توسعه یافته ی DSP    63
3-3- الف) کامپایلر  C    64
3-3- ب) اسمبلر    65
3-3- ج) پیوند دهنده    65
3-4) بقیه ابزارهای توسعه    67
3-5) نرم افزار Code Composer Studio     68
3-6)نرم افزار های با محیط گرا فیکی برای نوشتن کد    74
فصل چهارم : کاربردهای پردازنده های DSP    76
4-1) کاربردهایی از رادار    78
4-2) آماده کردن سیگنال آنالوگ برای برقراری ارتباط از طریق یک کانال مخابراتی    82
4-3) تحلیل سیگنال آنالوگ برای استفاده از شناسایی صدا در سیستم تلفن    83
4-4) کاربرد  DSPدر پردازش سیگنال های زلزله ثبت شده در شبکه ملی لرزه نگاری ایران    84
4-5) لنز به عنوان یک ابزار قدرتمند برای محاسبه تبدیل فوریه جهت پردازش سیگنال های دریافتی    85
4-6) کاربرد پردازنده های DSP و تبدیل فوریه چند بعدی در تصویر برداری MRI    87
4-7) استفاده از پردازنده های DSP در تشخیص الگوی گاز    88
4-8) کاربرد پردازنده های DSP در پردازش تصویر    89
4-9) فیلترهای تطبیقی و نقش آنها در پردازش سیگنال های دیجیتال    89
4-10) توموگرافی    90
4-11)کاربرد پردازنده های  DSPدر سیستم های قدرت و رله های حفاظتی    91
ضمیمه ی الف: شماتیک بورد DSP STARTER KIT (DSK)TMS320C6711.................................93
مراجع    116










شامل 91 صفحه word


دانلود با لینک مستقیم


دانلود تحقیق مطالعه و بررسی پردازنده های DSP و امکان سنجی یک سامانه ی حداقل جهت کار با آنها

پردازشگری دیجیتال یا DSP

اختصاصی از فی فوو پردازشگری دیجیتال یا DSP دانلود با لینک مستقیم و پر سرعت .

پردازشگری دیجیتال یا DSP


پردازشگری دیجیتال یا DSP

 فرمت فایل : word(قابل ویرایش)تعداد صفحات13

 

بخش مخابرات هوایی از مهمترین و اصلی ترین بخش هاست و زیرسیستم های یک سیستم هوایی را تشکیل می دهد. درحوزه صنعت هوایی و ناوبری، گیرنده ها و فرستنده های رادیویی نقش اساسی را دربخش مخابراتی برعهده دارند بخش مخابرات از سه بخش اساسی گیرنده، فرستنده و کانال مخابراتی تشکیل شده است که دراین مقاله بیشتر به پردازش سیگنالهای گسسته درزمان می پردازیم که در گیرنده ها و فرستنده های مخابراتی نقش اساسی را ایفا می کنند گیرنده های رادیویی نقش اساس درآشکارسازی، آنالیز، شنود و جهت یابی سیگنالهای دریافتی داشته که عمدتاً از نوع سوپرهیتروداین استفاده می شود.
علاوه بر سیستم های رادیویی، بسیاری از انواع سیتمها برای ارسال دیتاهای با ارزش، از سیگنال های رادیویی RF استفاده می کنند که دارای رشدی مداوم ، پیوسته و قابل توجه هستند، گیرنده های هوایی برای انواع مختلفی از کاربردها و حوزه ای عملیاتی طراحی و بنا به نیاز، بصورت انفرادی و یا عمدتاً درقالب سیستم بکارگیری می شوند که عمده اهداف و مقاصد این نوع گیرنده ها برای ارتباطات هوایی یا زمین به هوا و بالعکس انجام می شود عمده تعاریف به کاررفته درمخابرات هوایی یا درکل، مخابرات:
رنج دینامیکی : رنج از کمترین تا بیشترین سیگنالهای ورودی برحسب dB، که یک گیرنده می تواند احساس کند بطور مثال اگر یک گیرنده قادر به آشکارسازی ، سیگنالهای بین dB 10 و dB50- باشد در این صورت رنج دینامیکی گیرنده dB 60 خواهد بود.
-پهنای باند لحظه ای : پهنای باند گیرند درهر نقطه معلوم از زمان (که اساساً کمتر از پهنای باندکلی سیستم برای هرگیرنده می باشد.
-حساسیت یا Sensitivity: کمترین سطح توان سیگنال دریافتی که هر گیرنده قادر به آشکارسازی آن می باشد را گویندکه (برحسب dBm اندازه گیری می شود)
-پهنای باند رادیویی کل : رنج فرکانسی که گیرنده قادر به آشکارسازی آنها می باشد راگویند.
-توانایی پردازش چندین سیگنال: میزان قابلیت و توانایی گیرنده درتشخیص و تمیز دادن بین دو سیگنال راداری درفرکانس های متفاوت در درون پهنای باند لحظه‌ای یک گیرنده
پردازشگرهای دیجیتالی درگیرنده های دیجیتالی
به دلیل استفاده از تکنیک سوپرهیتروداین درگیرنده های دیجیتالی ابتدا به مقدمه ای از این گیرنده ها می پردازیم سپس گیرنده های دیجیتالی را شرح داده و سپس به پردازشگر دیجیتالی که مهمترین قسمت این بخش از گیرنده هاست می پردازیم.

گیرنده های سوپرهیتروداین:
گیرنده های سوپرهیتروداین از رایجترین و پرکاربردترین نوع گیرنده ها درجهان برای تقریباً همه سیستم های دریافت رادیویی و راداری با بهره گیری از ساختار سوپرهیت می باشد. درگیرنده سوپرهیت نیاز به تقویت کننده رادیویی باند پهن برای اصلاح حساسیت نیست بلکه به جای آن، سیگنال RF با استفاده از یک مخلوط کننده یا میکسر و یک نوسان ساز محلی به یک فرکانس میانی تبدیل و سپس با استفاده از یک تقویت کننده IF، گین با بهره مورد نیاز بدست می آید. سیگنال تبدیل شده به فرکانس پائین ازمیان یک فیلتر میان گذر عبور می کند، این فیلتر باعث عبور بودن تضعیف سیگنال مورد نظر شده و سایر سیگنالهای ناخواسته بویژه سیگنالهای ناشی از حاصلضرب های فرکانسی که باعث تولید اعوجاج اینترمدولاسیون و در نتیجه سیگنال نامطلوب می شوند را حذف می نماید و آنها را عبور نمی دهد.
مزیت تبدیل سیگنال RF به یک سیگنال IF با فرکانس پائین تر به روش سوپرهیت این است که فیلتر ها و تقویت کننده هایی با پهنای باند باریک و با مشخصه های فرکانس قطع نیز نیازمند است که درفرکانس های IF به راحتی در درسترس است به همین دلیل گیرنده های سوپرهیتروداین دارای حساسیت بالا و انتخاب گری فرکانس بسیار خوبی است که باعث ایده آل بودن آنها برای آنالیز دقیق و جزئی مشخصه های سیگنال دریافتی است. هرچند بسبب بالا بودن سطح انتخابگری فرکانس این گیرنده معمولاً دارای پهنای باند فرکانس لحظه ای باریک بوده و قادر نیست چندین سیگنال ورودی را بطورهمزمان کنترل و پردازش نماید. در زمینه پردازش بعداً مفصلاً بحث خواهد شد.
گیرنده های دیجیتالی :
بروز وظهور گیرنده های دیجیتالی نتیجه پیشرفت و توسعه در طراحی آی سی های سرعت بالا و امکان کوچک سازی و بهره گیری از کامپیوترهای دیجیتال توانمند برای پردازش دیجیتالی سیگنال می باشد. اصول عملکرد گیرنده ها براساس تبدیل سیگنالهای دریافتی به رشته بیتهای دیجیتالی است. که با نمونه برداری و کوانتیزه نمودن سیگنالهای رادیویی (RF)، با بهره گیری از مبدلهای آنالوگ به دیجیتال با سرعت بالا انجام می شود. بلوک دیاگرام شکل 1 یک گیرنده دیجیتالی رانشان می دهد که از ساختار سوپرهیتروداین برای بخش رادیویی بهره گرفته است. فرکانس نمونه برداری (FS) مبدل آنالوگ به دیجیتال بایستی حداقل دو برابر پهنای باند سینگنال IF به منظور تحقق معیار نایکوئیست باشد


دانلود با لینک مستقیم


پردازشگری دیجیتال یا DSP