شبکه عصبی مصنوعی روشی عملی برای یادگیری توابع گوناگون نظیر توابع با مقادیر حقیقی، توابع با مقادیر گسسته و توابع با مقادیر برداری میباشد.
یادگیری شبکه عصبی در برابر خطاهای داده های آموزشی مصون بوده و اینگونه شبکه ها با موفقیت به مسائلی نظیر شناسائی گفتار، شناسائی و تعبیر تصاویر، و یادگیری روبات اعمال شده است.
شبکه عصبی چیست؟
شبکه عصبی چه قابلیتهائی دارد؟
مسائل مناسب برای یادگیری شبکه های عصبی
الهام از طبیعتتوابعی که پرسپترون قادر به یادگیری آنها میباشد
قانون دلتا Delta Rule
تقریب افزایشی gradient descent
یک سلول واحد
انتشار به سمت عقب
فضای فرضیه و بایاس استقرا
دلایل رخ دادن overfitting
انواع مختلف یادگیری
شامل 85 اسلاید powerpoint
دانلود پاورپوینت شبکه های عصبی مصنوعی