جزوه کامل مدارهای الکتریکی کلاس کنکور دکتر کارو زرگر موسسه بینش سال 1394 با 150 صفحه آموزش کامل فصل ها به همراه حل تس.
جزوه کامل مدارهای الکتریکی کلاس دکتر کارو زرگر موسسه نصیر
جزوه کامل مدارهای الکتریکی کلاس کنکور دکتر کارو زرگر موسسه بینش سال 1394 با 150 صفحه آموزش کامل فصل ها به همراه حل تس.
جزوه کامل مدارهای الکتریکی دکتر حامد شیرین آبادی موسسه بینش سال 1394 با 615 صفحه آموزش کامل فصل ها به همراه حل تست های سالهای گذشته کنکور ارشد و دکتری کنکور سراری و آزاد.
دانلود گزارش کاراموزی رشته برق آشنایی کلی با سیستم قدرت الکتریکی بافرمت ورد وقابل ویرایش تعدادصفحات 55
گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی,گزارش کارورزی
این پروژه کارآموزی بسیار دقیق و کامل طراحی شده و جهت ارائه واحد درسی کارآموزی میباشد
آشنایی کلی با سیستم قدرت الکتریکی .
تاریخچه فکر استفاده از منابع انرژی موجود در طبیعت در راه انجام مقاصد، از روزگاران نخست با بشر همراه بوده است. در ابتدا تنها انرژی قابل استفاده صرفا نیروی بدنی بود که این قدرت را در تمدن های پیشرفته به وسیله اهرم ها و قرقره ها به صورتهای مختلف تبدیل می نمودند. اولین منابع انرژی خارجی که شناخته شد، استفاده از قدرت حیوانات و آب و باد بود که به منظور حمل بار، آماده ساختن زمین و کار انداختن آسیاب ها به کار گرفته می شدند. تحول بزرگ در استفاده از منابع انرژی در حقیقت از زمان شناختن قدرت بخار آب توسط « جیمز وات» آغازشد که با ساختن ماشین بخار توانست برای بشر عصر جدیدی را آغاز نماید. از این پس سیر تکاملی استفاده از منابع انرژی طبیعت به سرعت صورت گرفت. به طوری که در حال حاضر با استفاده از توربین های آبی و بکاربردن قدرت اتمی در نیروگاههای هسته ای، مسئله تبدیل قدرتهای عظیم تا حدود زیادی حل شده است. پس از شناخت منابع انرژی و تولید قدرت، موضوع قابل استفاده بودن و سهولت بکارگیری این انرژی پیش می آید. برای اینکه انرژی تولید شده مفید واقع شود باید دارای خصوصیاتی باشد که عبارتند از: قابلیت انتقال آسان. راندمان انتقال بالا. سهولت بکارگیری عمومی. قابلیت کنترل توسط مصرف کننده . قابلیت تبدیل به صورت های مختلف انرژی. ویژگی هایی که ذکر شد در انرژی الکتریکی بیش از سایر انرژی ها جمع می باشد چراکه مثلا اگر انرژی مکانیکی را در نظر بگیریم، انتقال آن حتی به فاصله چند صد متر احتیاج به تجهیزات فوق العاده زیادی دارد و علاوه بر این راندمان انتقال آن نیز مناسب نمی باشد. در مرحله بعدی توزیع و کنترل آن برای مصرف کننده و تبدیل آن به صورتهای دیگر انرژی به صورت مستقیم بی نهایت مشکل و حتی در مواردی غیر علمی است. در صورتی که انرژی الکتریکی با وجود پیشرفتهایی که در این فن حاصل شده کلیه ویژگیهای لازم را دارا می باشد. کنترل آن توسط مصرف کننده صرفا به وسیله چند کلید امکان پذیر بوده و تبدیل آن به انواع انرژی ها از قبیل مکانیکی، نورانی، حرارتی، شیمیایی و ... با لوازمی که ساخته شده در کمال سادگی و سهولت انجام می گیرد. بالاتر این که در محل مصرف دارای هیچ گونه آلودگی محیطی نیست. با عنایت به ویژگی هایی که از انرژی الکترکی شناخته شد، فکر تولید و توزیع انرژی به صورت انرژی الکتریکی تقویت گردید تا این که انرژی الکتریکی اول بار به صورت جریان دائم تولید و توزیع شد و اولین خط انتقال مربوط به آن در سال 1882 توسط «اسکار میلر» و « مارلن دیرز» بین مونیخ و میر باخ کشیده شد. مهمترین اشکالی که در تولید و توزیع انرژی الکتریکی به صورت جریان دائم به چشم می خورد، دشواری تبدیل ولتاژ در این سیستم بود، چون برای مصرف کننده احتیاج به ولتاژ محدودی بود و از این جهت خطوط انتقال و توزیع نیز نباید در این ولتاژ کار می کردند و از این نظر تلفات قدرت سیستم زیاد بود،به خصوص وقتی که تقاضای قدرت الکتریکی در منطقه ای افزایش می یافت. در ولتاژ انتقال و توزیع محدود جریان دائم، دامنه جریان زیاد می گشت و این امر باعث افزایش مجذوری تلفات قدرت و در نتیجه پایین آمدن بازده سیستم می شد. برای رفع این نقیصه با توجه به رابطه افت قدرت 2p = R.I یا بایستی سطح مقطع خطوط را قطورتر انتخاب می نمودند که خود باعث قوی تر شدن دکل ها، بست های مکانیکی ودر نتیجه غیر اقتصادی تر شدن سیستم می شد یا این که به نحوی بایستی دامنه جریان انتقالی را کاهش می دادند که این امر در جریان دائم با افزایش دامنه ولتاژ در توان ثابت انتقال امکان پذیر نبود. پس بنا به دلایل فوق این سیستم توزیع و انتقال انرژی در مسافتهای طولانی و مقادیر توان عظیم با مشکل مواجه شد و کارآیی خود را از دست داد. با مطرح شدن ماشین های جریان متناوب سینوسی که از نظر ساختمان و نحوه ساخت، نسبت به ماشین های جریان دائم ساده تر بودند و با عنایت به این امر که تغییر سطح ولتاژ در سیستم جریان متناوب به سهولت انجام می پذیرد، برای تولید، انتقال و توزیع انرژی الکتریکی از سیستم تک فاز جریان متناوب سینوسی به جای جریان دائم استفاده گردید. علت انتخاب شک موج سینوسی علاوه بر سادگی تولید آن، ثابت ماندن شکل آن در تبدیل ولتاژ توسط ترانسفورماتورها بود، زیرا در غیر این صورت شکل موجی جریانی که در محل های مختلف در اختیار مصرف کننده ها قرار می گرفت متفاوت می شد و اشکالات زیادی در استفاده از انرژی الکتریکی پدید می آمد. اما ایده آل نبودن سیستم تک فازه در بهینه کردن ماشین های تولید و تبدیل کننده انرژی الکتریکی و به ویژه عدم توانایی مطلوب آنها در ایجاد میدان دوار و ساده کردن تبدیل انرژی الکتریکی به مکانیکی، باعث به وجود آمدن مشکلاتی در بهره برداری ازاین سیستم گردید . زمانی که «نیکلاتسلا» در سال 1888 مقاله ای راجع به سیستم تک فازه آشکار گشت. به وجود آمدن سیستم دوفاز محققین را بر آن داشت که راجع به سیستم های چند فازه به طور کلی تحقق نمایند و تعداد فازهای سیستم بهینه را بدست آوردند. نیتجه این تحقیقات به تولید، انتقال و توزیع انرژی الکتریکی به صورت سه فاز منجر گردید. از این رو پس از سال 1891 که اولین خط انتقال سه فاز فرانکفورت و لاوفن نصب شد، توسعه سیستم های قدرت سه فاز رو به فزونی گذاشت و تا کنون نیز اساس تولید، انتقال و توزیع انرژی الکتریکی بر روی سیستم های سه فازه استوار است. از مزایای این سیستم، بهینه شدن دستگاه های تولید و تبدیل انرژی با این روش و ثابت بودن قدرت لحظه ای مجموع سه فاز نسبت به زمان است. این امر تولید گشتاور ثابت در روی محور موتورها و نیاز به گشتاور ثابت برای ژنراتورها را باعث شد. علاوه بر این، سیستم انتقال و توزیع انرژی سه فاز دارای بازده بالاتری نسبت به سیستم انتقال و توزیع تک فاز است. تولید و مصرف انرژی الکتریکی بعد از آن که ویژگیهای انرژی الکتریکی شناخته شد، واحدهای کوچک عهده دار تولید و توزیع انرژی الکتریکی گردیدند. پیشرفت سریع در ساختن دستگاه های الکتریکی احتیاجات بشری را مرتفع می ساخت و مصرف انرژی الکتریکی را با نرخ زیادی روز افزون می نمود. زیاد شدن مصرف انرژی الکتریکی، وابستگی زیاد احتیاجات روزمره را به انرژی الکتریکی موجب گردید و به همین دلیل ضرورت تامین پایداری شبکه احساس شد. بدین ترتیب تولید انرژی به صورت کوچک و واحدهای منفرد مطرود و واحدهای بزرگ تولید انرژی با یکدیگر برای تامین برق مصرف کنندگان مرتبط گردیدند و از آن رو شبکه های به هم پیوسته به وجود آمدند. عامل دیگری که در تسریع این امر کمک نمود هم زمان نبودن پیک مصرف نیروگاه های مختلف در مکان های مختلف و در نتیجه امکان کمک کردن نیروگاه ها به یکدیگر در تولید انرژی شبکه بود و در نتیجه بازده اقتصادی بالاتر و هزینه تولید انرژی الکتریکی را پایین می آورد. مساله ای که ایجاد شبکه های انتقال هم پیوسته قدرت را باعث شد، علاوه بر عوامل فوق متمرکز نبودن مناطق مصرف و منابع انرژی بود. البته در این مورد از انرژی آب آبشارها و سدها می توان بدون هیچ گونه بحث و توضیح اضافی نام برد. لیکن در مورد نیروگاه های حرارتی چون انتقال سوخت به خصوص سوختهای مایع از طریق لوله ها باانتقال انرژی الکتریکی انجام می شود که طی این محاسبات با توجه به نزدیکی به مرکز باز، هزینه سوخت، هزینه تلفات و مسائل زیست محیطی بهترین محل برای نیروگاه انتخاب می شود. به طور کلی برای تامین برق در حال حاضر معمولا از سه رده شبکه استفاده میشود، رده اول، شبکه های انتقال که دارای ولتاژهای بیش از 132 کیلو وات و به منظور انتقال قدرت های بزرگ در فواصل زیاد به کار می رود. رده دوم، شبکه های فوق توزیع، که ارتباط بین پست ها و نیروگاه های داخل یک منطقه محدود را از نظر تامین انرژی بر عهده دارند و دارای ولتاژی بین ولتاژ شبکه انتقال و شبکه توزیع انرژی می باشند. گاهی موارد به شبکه های فوق توزیع، شبکه زیر انتقال نیز اطلاق می شود. رده سوم، شبکه توزیع که صرفا مصرف کننده ها به آن وصل می گردند و ولتاژ این شبکه برای مصرف کننده های کوچک در ایران [V] 380 و برای مصرف کننده های بزرگ [KV]20 میباشد. به طور کلی استانداری که برای ولتاژ شبکه های مختلف در ایران انتخاب شده عبارتست از : [V]380 ، [KV] 20 ،[KV] 63 ،[KV] 132 ،[KV] 330 و [KV] 400 .
فصل 1 – مقدمه
یک موتورالکتریکی، الکتریسیته را به حرکت مکانیکی تبدیل می کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است توسط ژنراتور انجام می شود. این دو وسیله بجز در عملکرد، مشابه یکدیگر هستند .اکثر موتورهای الکتریکی توسط الکترو مغناطیس کار می کنند، اما موتورهایی که براساس پدیده های دیگری نظیر نیروی الکتروستاتیک و اثر بیزوالکتریک کاری کنند هم وجود دارند.
ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می گیرد، نیرویی برآن ماده از سوی میدان اعمال می شود. دریک موتور استوانه ای، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله ای معین از محور روتور به روتور اعمال می شود می گردد.
اغلب موتورهای الکتریکی دوارند، اما موتور خطی مهم وجود دارند. در یک موتور دوار بخش متحرک روتور و بخش ثابت استاتور خوانده می شود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است.
انواع موتورهای الکتریکی عبارتند از:
1- موتورهایDC
2- موتورهایAC
3- موتورهای پله ای
4- موتورهای خطی
موتورهای AC شامل موتورهای AC تک فاز و موتورهای AC سه فاز می شوند.
موتورهای AC تک فاز:
معمولترین موتور AC تک فاز موتور سنکرون قطب چاکدار است که اغلب در دستگاه هایی به کار می رود که گشتاور پایین نیاز دارند نظیر پنکه های برقی، اجاق های ماکروویو ودیگر لوازم خانگی کوچک، نوع دیگر موتور AC تک فاز موتورالقایی است که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس به کار می رود.
موتورهای AC سه فاز:
برای کاربردهای نیازمند به توان های بالاتر ،از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان استفاده می کنند.اغلب روتور شامل تعدادی هادی های مسی است ، که در فولاد قرار داده شده اند. از طریق القای الکترو مغناطیسی میدان مغناطیسی دوار در این هادی هاالقای جریان می کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده وموجب می شود که موتور در جهت گردش میدان به حرکت در آید. این نوع از موتور با نام موتور القایی معروف است. ماشین های القائی سه فاز ، ماشین هایی با سرعت آسنکردن هستند که در حالت موتوری زیرسرعت سنکرون ودر حالت ژنراتوری بالای سرعت سنکرون کار می کنند. این ماشین ها که مستحکم بوده و به نگهداری کمی نیاز دارند در مقایسه با ماشین های سنکرون و DC در اندازه ای مشابه ، ارزان تر می باشند و در محدوده چند وات تا 1000HP ساخته شده و به کار گرفته می شوند. همچنین در مواردی نظیر قابلیت اطمینان بالاتر، وزن،حجم وانریسی کمتر، راندمان بیشتر، قابلیت عملکرد در محیط های باگرد و غبار و در محیط های قابل انفجار نسبت به موتورهای DC برتر هستند.
مشکل اصلی موتورهای dc وجود کموتاتور و جاروبک است، که نگهداری زیاد و پرهزینه و نامناسب بودن عملکرد موتور در محیط های باگرد وغبار بالا و قابل انفجار را بدنبال دارد با توجه به مزایای فوق در تمامی کاربردها موتورهای القایی بطور وسیع بر سایر موتورهای الکتریکی ترجیح داده می شوند با این حال تا چندی پیش از موتورهای القایی فقط در کاربردهای سرعت ثابت استفاده شده است و در کاربردهای سرعت متغیر موتورهای DC ترجیح داده شده اند این امر ناشی از آنست که روش های مرسوم در کنترل سرعت موتورهای القایی هم غیراقتصادی وهم دارای راندمان کم بوده است. اما با بهبود در قابلیت ها و کاهش در هزینه تریستورها و اخیراً در تراتریستورهای قدرت و GTO ها ( که در کنترل سرعت این موتورها استفاده می شوند) امکان ساخت محرکه های سرعت متغیر با استفاده از موتورهای القایی بوجود آمده است که در برخی موارد حتی از نظر هزینه و عملکرد با موتور dc نیز پیشی گرفته اند در واقع چرخ صنایع امروز را این ماشین ها می گردانند هرچند که سرعت آنها به آسانی سرعتDC قابل کنترل نبوده و جریان راه اندازی زیادی که تقریباً 6 تا 8 برابر جریان بار کامل آنهاست نیاز دارند. در ضمن این موتورها وقتی با بارکم کار می کنند ، ضریب قدرت پایین دارند.سرعت موتورAC در ابتدا به فرکانس تغذیه بستگی دارد ومقدار لغزش، یا اختلاف در سرعت چرخش بین روتور و میدان استاتور، گشتاور تولیدی موتور را تعیین می کند تغییر سرعت دراین نوع از موتورها را می توان با داشتن دسته سیم پیچی ها یا قطب هایی در موتور که با روشن و خاموش کرد نشان سرعت میدان دوار مغناطیسی تغییر می کند ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییردادن فرکانس منبع تغذیه ، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم . به طور کلی روشهای مرسوم کنترل سرعت موتور AC(القائی) به صورت زیر است:
1- کنترل با منبع ولتاژ متغیر فرکانس ثابت
2- کنترل با منبع ولتاژ فرکانس متغیر
3- کنترل مقاومت رتور
4- کنترل از روش تزریق ولتاژ در مدار رتور
در این جا ما فقط به کنترل سرعت موتور AC سه فاز(القایی) از طریق کنترل ولت بر هرتز (روش دوم) می پردازیم.
فصل 2 : مقدمه ای بر سیمولینک
2-1سیمولینک چیست؟
سیمولینک یکی از ابزارهای گسترش یافته Matlab است که امکان ایجاد سریع و دقیق مدل کامپیوتری سیستم های دینامیکی با استفاده از نماد نمودار بلوکی را برای مهندسان فراهم می کند. سیستم های غیرخطی پیچیده را می توان با سیمولینک به سادگی مدل نمود. مدل سیمولینک می تواند شامل اجزا پیوسته و گسسته باشد. به علاوه ، مدل سیمولینک قادر به ایجاد انیمیشن گرافیکی است که میزان پیشرفت شبیه سازی را به صورت بصری نمایش داده و فهم رفتار سیستم را به میزان چشمگیری بهبود می بخشد.
به طور خلاصه قدم هایی که برای استفاده از سیمولینک برداشته می شود شامل یافتن یک مدل یا نمایش ریاضی همراه پارامترهای سیستم مورد نظر، انتخاب روش مناسب انتگرال گیری و درآخر تبیین شرایط اجرای شبیه سازی نظیر شرایط اولیه و زمان اجرا می باشد مدل سازی در سیمولینک یا استفاده از رابطه های گرافیکی و کتابخانه الگوها یا بلوک های توابعی که عموماً در تشریح خصوصیات ریاضی سیستم های دینامیکی کاربرد دارند، تسهیل شده است.
2-2 ورود به سیمولینک
سیمولینک یک بسط نرم افزاری در محیط Matlab است و برای ورود به آن می باید ابتدا Matlab را اجرا کنید سپس از درون Matlab با کلیک آیکون سیمولینک در نوار ابزار Matlab همان طور که در شکل (2-1) نشان داده شده یا با وارد کردن فرمان simulink در اعلان Matlab سیمولینک را فراخوانی کنید در نتیجه صفحه ی simulink library Browser که شامل کتابخانه سیمولینک است باز می شود.
مجموعه متنوعی از الگوها یا بلوک های توابع، تحت کتابخانه های مختلف گردآوری شده است یک الگو را به طریق زیر می توان از کتابخانه کپی نموده و در صفحه ی مورد نظر قرار داد: الگوی مورد نظر را انتخاب نموده و سپس آن را به محل مطلوب در صفحه ی سیمولینک بکشید و یا روی الگو کلیک راست کنید و گزینهAdd to untitled را انتخاب کنید.
بسیاری از الگوها دارای مقادیر اولیه هستند که قبل از استفاده از آنها، می باید مقادیر اولیه را تعریف کنید.برای مشاهده یا تغییر این مقادیر باید روی الگوی مورد نظر دوبار کلیک نمود که در این صورت پنجره ی گفت وگویی باز خواهد شد که شامل مستطیل هایی است که برای وارد نمودن پارامترهاست. اطلاعات درخواستی می تواند به شکل متغیر حرفی یا عدد ثابت وارد شود متغیرهای حرفی را قبل از شروع شبیه سازی می توان در فضای Matlab تعریف کرد هنگامی که شبیه سازی چندین بار تکرار شود،برای مثال مطالعه ی حساسیت نسبت به پارامترها، استفاده از متغیرهای حرفی ارجح است.
پارامترها و مقادیر اولیه متغیرهای حرفی را می توان با تایپ کردن آنها در محیط Maltab وارد نمود این کار با سیستم نوشته شده ، امکان پذیر است. چنین m فایلی همچنین می تواند در صفحه ی سیمولینک و یا استفاده از بلوک الگو شده اجرا گردد. برای شبیه سازی گسترده ، بهره گیری ازm فایل ها توصیه می شود. ایجاد m فایل و اشکال زدایی از آن را می توان توسط ادیتور مربوط از toolbar در متلب انجام داد.
2-4 پیکربندی شبیه سازی:
مدل سیمولینک در اصل برنامه ای کامپیوتری است که مجموعه ای از معادلات دیفرانسیل وتفاضلی را تعریف می کند.هنگامی که از نوار منوی پنجره ی مدل simulation: start را انتخاب می کنید (شروع شبیه سازی) سیمونیک آن مجموعه معادلات دیفرانسیل و تفاضلی را ، توسط یکی از حل کننده های معادله دیفرانسیل خود، به صورت عددی حل می کند. قبل از اجرای شبیه سازی می توانید پارامتری های شبیه سازی متنوعی نظیرشروع وپایان شبیه سازی، اندازه گام شبیه سازی وچند تلورانس مختلف را تنظیم کنید و از میان چندین الگوریتم انتگرال گیری کیفیت بالا یکی را برگزینید. همچنین می توانید سیمولینک را برای دریافت داده های شخصی از فضای کاری MATLAB و ارسال نتایج شبیه سازی به آن پیکربندی نمایید.
برای تنظیم پارامترهای شبیه سازی، از نوار منوی پنجره ی مدلsimulation : parameters را انتخاب کنید تا کادر مکالمه پارامترهای شبیه سازی مطابق شکل (2-3) باز شود کادر مکالمه پارامترهای شبیه سازی دارای چهار صفحه ی جدول بندی شده ی Advanced , Diagnostics, workspace I/O می باشد صفحه ی solver ، حل کننده معادله ی دیفرانسیل را انتخاب وپیکربندی می کند. از این قسمت حل کنندهها در دو رده دسته بندی شده اند: گام متغیر(variable-step) و گام ثابت (fixed –step) برای هر رده چندین الگوریتم انتگرال گیری مختلف وجود دارد. اگر حل کننده گام متغیر انتخاب شود، دارای فیلدهایی برای انتخاب ماکزیمم اندازه گام انتگرال گیری ، اندازه گام انتگرال گیری اولیه و تولرانس های نسبی و مطلق می باشد. اگر حل کننده گام ثابت انتخاب شود تنها یک فیلد که برای وارد کردن اندازه گام می باشد، دارد.
2-5 آنماز واجرای یک شبیه سازی:
قبل از آغاز شبیه سازی،حتماً باید آغاز و انتهای شبیه سازی را در حین پیکربندی شبیه سازی تعریف کنید. شبیه سازی را می توان با کلیک کردن روی کلمهstart تحت منوی simulation صفحه ای سیمولینک یا صفحه ی مدل آغاز نمود. در صورت تمایل می توانید قبل ازآغاز شبیه سازی، اسکوپ و ساعت را تنظیم کنید تا پیشرفت شبیه سازی را روی نمایشگر مشاهده نمایید.
2-5-1 مشاهده متغیرها در حین اجرا
می توانید بوسیله ی scope که در کتابخانه سیمولینک در قسمت sinks قرار دارد متغیرها را در بین اجرای شبیه سازی مشاهده کرد فقط کافی است scope را به متغیری که می خواهیم آن را در حین اجرا ببینیم وصل کنیم.
کلاً برای مشاهده خروجی هادر سیمولینک چند وسیله خارجی تحت کتابخانهsinks فراهم آمده است. اسکوپ فراهم شده ، یک ورودی دارد که سیگنال های مالتی پلکس شده را نیز می پذیرد.
2-6- ذخیره داده ها
شکل(2-4) دو روش متفاوت برای مشاهده متغیرها را نشان می دهد. خروجی ژنراتور موج (سیگنال ژنراتور) را می توان مستقیماً طی مدت اجرای شبیه سازی ، توسط اسکوپ مشاهده کرد، یا اگر قرار است داده ها رسم شده یا بعداً مورد استفاده قرار گیرند می توان خروجی مطلوب به همراه زمان اجرای شبیه سازی از طریق ساعت را به فایل داده Matlab و با استفاده از الگویTo File در sinks ذخیره نمود. به جای این که نتایج مستقیماً در یک فایل نوشته شود، خروجی را می توان به شکل موقتی تحت یک آرایه (yout) در محیط Matlab و بااستفاده از الگوی to workspace که تحت sinks می باشد ذخیره کرد.
داده هایی که به این ترتیب تحت آرایه ی yout، ذخیره شده ، در بخش های دیگر شبیه سازی در سیمولینک می تواند مورد استفاده قرار گیرد.اسامی فایل های داده و یا آرایه ی مربوط به to file یا workspace ، حجم مناسبی از بافر باید قبل از شروع شبیه سازی به آن تخصیص یابد. اگر حجم بافر مناسب نباشد، داده های ذخیره شده توسط داده های جدید جایگزین می شوند. در خصوص پارامترهای to workspace امکان داخل کردن سه پارامتر دیگر وجود دارد.
1-limit data points to last : طول بافراست.
2-decimation : یک عدد صحیح مثل n است ، بیانگر آن است که اطلاعات خروجی پس از هرn مرحله از انتگرال گیری، ذخیره می شود. از این انتخاب جایی استفاده می شود که حجم حافظه محدود است، یااین که نیازی به حفظ همه ی اطلاعات نباشد.
3- sample time: این پاراتروقتی مفید است که قرار باشد اطلاعات نمونه گیری شده جهت رسم شکل یا تجزیه وتحلیل به کار رود.
شما همچنین می توانید آرایه ای که قبلاً درمحیط matlab تولید شده برای استفاده های بعدی نظیر رسم شکل یا تجزیه و تحلیل، توسط دستورsave در یک فایل ذخیره کنید.
در این صورت matlab یک فایل باینری(filename. Mat) در دایرکتوری جاری و بامحتوی آرایه ی (yout) در داخل آن ایجاد می کند.
200 صفحه فایل ورد قابل ویرایش
کوره های الکتریکی
تولید و ذوب آلومینوم در مقادیر زیاد و برای اجتناب از اکسیداسیون مذاب و جلوگیری از ورود گازهای ناشی از احتراق سوختگیهای فسیلی و افزایش کیفیت مذاب آلومینوم کوره های الکتریکی در انواع کوره های مقاومتی بوته ای ، روبرو کوره های القائی مورد استفاده قرار می گیرند.
مکانیسم اصلی کوره های مقاومتی استفاده از گرمای حاصل از مقاومت میله ( الکترودهائی ) در مقابل عبور جریان می باشد . معمولا مقاومت ها از نیکروم ( نیکل ، کرم ، آهن ) و کرومل ( اهن ، کروم ، آلومینوم ) ساخته می شوند . در نوع کوره های مقاومتی بوته ای که با ظرفیت حداکثر 500 کیلوگرم به کار می روند ، بوته از چدن خاکستری ساخته می شود و قدرت الکتریکی این کوره معمولا 40 تا 80 کیلو وات می باشد.
کوره های روبرو الکتریکی و بوته ای مقاومتی تفاوت چندانی با آنچه در قسمت های قبل گفته شد ندارند و فقط تفاوت عمده در منبع حرارتی است که الکتریکی و مقاومتی بوه و از این رو کنترل حرارت و کیفیت محصول بهتر و مطلوب تر می باشد. در بعضی از کوره های مقاومتی بوته از فلز ساخته می شود و مکانسیم را طوری تهیه می کنند که بوته مرکز و هسته اصلی مقاومت و ایجاد حرارت باشد
کوره های القائی
کوره های القائی از نظر افزایش ظرفیت و تقلیل مصرف انرژی نسبت به کوره های مقاومتی دارای مزایائی می باشند. این کوره ها در ظرفیت های مختلف قادر به ذوب 15کیلوگرم تا چندین تن آلومینوم هستند.
در این کوره ها هیچ گونه فعل و انفعال شیمیائی که باعث افزایش ناخالصی و تغییرات ترکیبی مذاب گردد، انجام نمی شود و علاوه بر آن به دلیل عدم استفاده الکترود امکان ورود ناخالصی های مواد از طرق مکانیکی نیز امکان پذیرنیست و از نظرمسائل الکتریکی محدودیتی برای افزایش درجه حرارت ندارند.
تا سال 1950 فقط کوره های القائی با فرکانس زیاد مورد استفاده قرار می گرفت که از نظر نیاز به تاسیسات و ژنراتور ها و همچنین ظرفیت بسیارکم ، از نظر سرمایه گذاری و هزینه تمام شده مقرون به صرفه نبود. در سال 1950 استفاده از کوره های القائی با فرکانس کم ( 50 تا 60 سیکل ) بدون هسته و کانال جریان ( ساده ) آغاز گردید که بنحو قابل ملاحظه ای هزینه سرمایه گذاری و قیمت تمام شده تقلیل پیدا کرد و افزایش ظرفیت و کارآئی آنها به سرعت بالا رفت بطوریکه امروز کوره هائی باظرفیت 70 تن چدن و 500/17 کیلو وات قدرت در مورد کوره های القائی با هسته و کانال جریان و 260 تن و 4000 کیلو وات قدرت در مورد کوره های القائی ساده مورد استفاده قرار می گیرد .
کوره های القائی به سه دسته :
کوره های فرکانس کم بدون هسته و کانال جریان
کوره های فرکانس کم با هسته و کانال جریان و
کوره های فرکانس زیاد، تقسیم می شوند که استفاده از دو نوع اول رو به افزایش می باشد.
کوره های القائی نوع اول بسیار ساده و مشتمل بر بوته و سیم پیچ های جریان است که به وسیله آب همواره خنک می شوند در حالی که در کوره های نوع دوم مذاب بین دو قطب اصلی ( هسته ) جریان پیدا می کند . تفاوت عمده این دو نوع کوره در استفاده از جریان برق و تبدیل به انرژی حرارتی می باشد.
کوره های نوع اول بیشتر در مورد ذوب شمش و قطعات بکار می روند و کوره های نوع دوم برای فوق ذوب ، تصفیه ، کنترل و نگاهداری مذاب مورد استفاده واقع می شوند و راندمان حرارتی و الکتریکی آنها زیادتر است و همان گونه که از شکل 4-2 استنباط می گردد منطقه ذوب آنها بسیار کوتاه می باشدو از این رو درجه حرارت و سرعت حرکت مذاب به حدی باید باشد تا درجه حرارت لازم در تمام قسمت های بوته تامین گردد.
اشکال عمده دیگر در کوره های القائی با هسته و کانال جریان درآنست که این کوره ها همواره برای شروع نیاز به مذاب دارند که در کنار کانال های جریان قادر به تشکیل هسته های القائی باشند .
تعداد صفحات: 38