این محدودیت، کل ظرفیت واحدهای DG نصب شده در سیستم توزیع را محدود می کند.
که CDGi ظرفیت DG انتخاب شده در iامین محل کاندید است. CDGi کل ظرفیت مجاز منابع DG است که در سیستم نصب می شود.
- III. بهینه سازی اجتماع مورچه گان(ACO):
- A. وجه عمومی الگوریتم ACO از رفتار مورچه ها به دست آمده است، همانطور که شکل 1 نشان می دهد. پروسه الگوریتم ACO زمانبندی سه عمل را مدیریت می کند.
گام اول ارزش دهی فرومن دنباله دار را شامل می شود. در تکرار(دومین بار) گام، هر مورچه یک حل کامل مساله را مطابق یک قانون حالت گذاری احتمالاتی می سازد. قانون حالت گذرا، اساسا به حالت فرومن وابستگی دارد. سومین گام، به روز کردن مقادیر فرومن است. به روز کردن فرومن در دو فاز اعمال می شود. اول فاز تبخیر است که کسری از فرومن تبخیر می شود(خشک می شود، بر باد می رود)، و سپس فاز تقویت شمار فرومن ها را روی مسیر با تعداد راه حل های بالا افزایش می دهد. این پروسه تکرار می شود تا به ملاک توقف برسد.
راه های مختلفی برای تفسیر اصول بالا به پروسه کامپیوتری جهت حل مساله بهینه سازی پیشنهاد می شود. روش بهینه سازی پیشنهادی برای این مقاله براساس الگوریتم ACO پیشنهاد شده در[18] است.
- B. اعمال ACO با مساله جایابی DG
مراحل اصلی الگوریتم ACO پیشنهادی به شرح زیر است:
گام اول) نمایش گراف فضای جستجو
قبل از هر چیز، ما به دنبال تدبیری هستیم که ساختاری را نشان دهد که مناسب برای مورچه ها باید تا برای حل مساله جستجو کنند. فضای جستجوی مساله در شکل 2 آمده است.
همه مقادیر ظرفیت کاندید محتمل در مکان n با طبقانی در فضای جستجو تا طبقه n با طبقاتی در فضای جستجو تا طبقه n معرفی می گردند. شمار طبقات برای هر سطح بار مساوی شمار گره های کاندید سیستم توزیع برای مکان DG است. بنابراین، شمار کل طبقات(nldxncd) است. یک حل مساله بعد از فرآیند تصمیم گیری مورچه برای شکل گیری زیر مسیرهای یک نوبت تکمیل می گردد.
گام 2) ارزش دهی ACO
در آغاز الگوریتم ACO، مقادیر فرومن کناره ها در فضای تحقیق، همه به یک مقدار ثابت() ارزش دهی می شوند. این مقدار دهی باعث می شود که مورچه گان مسیر خودشان را به صورت اتفاقی انتخاب کنند و بنابراین، فضای حل به طور موثرتری جستجو می شود.
گام 3) پخش شدن مورچه گان
در این مرحله، مورچه ها پخش می شوند و راه حل ها براساس سطح فرومن لبه ها شکل می گیرد. هر مورچه تور خود را از خانه شروع می کند و یکی از حالتها را در طبقه بعدی انتخاب می کند تا احتمال جهش زیر: (7)
که کل فرومن های امانی روی کناره ij در تکرار t، و مجموعه لبه های در دسترس که مورچه در حالت i می تواند انتخاب کند می باشد.
بعد از اینکه هر مورچه تور خود را به انتها برد، یک راه حل جدید برای مکان DG تولید می شود که با استفاده از تابع برازندگی ارزیابی می گردد.
گام 4) تابع برازندگی
در این گام، برازندگی تورهای تولید شده توسط مورچه ها براساس تابع برازندگی ارزیابی می شود. تابع برازندگی مساله با معکوس کردن هزینه کل(1) به علاوه یک ضریب جریمه برای حل های نشدنی(تخلف از محدودیت ها) تعیین می شود.
در عین حال، برای تسریع همگرایی خواص الگوریتم، از اطلاعاتی در تور برگشت خورده اما هنوز مفید است استفاده می شود. ضریب جریمه از صفر تا مقدار خیلی بالایی به صورت خطی افزایش می یابد.
گام 5) بهنگام سازی فرومن
هدف از بهنگام کردن مقادیر فرومن، افزایش مقادیر فرومن روی مولفه های حل است که در حل است که در حل های برازندگی بالا یافت می شود. همچنین، از نقطه نظر عملی، تبخیر فرومن به اجتناب از همگرایی خیلی سریع الگوریتم به سوی یک ناحیه جدید در فضای تحقیق استفاده می کند. از قاعده زیر استفاده می کنیم:
که (0<P<1) نرخ تبخیر فرومن است. بهترین تور یافت شده تا انتهای تکرار t است که در یک لیست مخصوص تغییرپذیر ذخیره می شود و هر زمان تعدادی مورچه یک تور با مقدار تابع کیفیت بهتر یافتند جایگزین می گردد. مقدار کیفیت تابع متناظر است.
Q یک متغیر ذهنی است که شمار فرومن اضافه شده به بهترین تور را کنترل می کند.
باند پایین تر فرومن است که در یک احتمال کوچک برای یک مورچه یک کناره معین انتخاب می شود. هنوز احتمال بزرگتر از صفر است. این باند پایین یک تابعی از شمارشگر تکرار به صورت زیر است:
(9)
که باند پایین اولیه فرومن است.
گام 6) تصمیم همگرایی
گامهای 3 تا 5 به ماکزیمم مقدار از پیش تعیین شده برسد که از راه آزمایش تعیین
می گردد. بهترین تور انتخاب شده در طول همه تکرارها حل بهینه مکان DG را
می رساند.