برنامه بنویسید که دو عدد را از ورودی بگیرد و تعداد مقسوم علیه مشترک آنها را نشان بدهد؟ با حلقه for
مقسوم علیه مشترک دو عدد
*مقاله بزرگترین مقسوم علیه مشترک*
تعداد صفحات: 14
فرمت فایل: word
تعریف:
مقسوم علیه های مشترک میان دو عددa وb، اعدادی هستند که بتوانند هم a و هم b را بشمارند به عبارت ریاضی: اگر c مقسوم علیه مشترک دو عدد a و b باشد، آنگاه c|a و c|b
مثلا مقسوم علیه های دو عدد 15 و30 را داریم:
{15={1,3,5,15}
30={1,2,3,5,6,10,15,30}
مقسوم علیه های مشترک میان این دو عدد عبارتند از:
مقسوم علیه های مشترک:{1,3,5,15}
بزرگترین مقسوم علیه مشترک میان دو عدد، عددی است که نسبت به تمام مقسوم علیه های مشترک میان دو عدد، بزرگترین باشد. به عبارت ریاضی: اگر d بزرگترین مقسوم علیه باشد، d|a و d|b و dبزرگتر از c باشد.
بزرگترین مقسوم علیه مشترک میان این دو عدد ، 15 است. که آن را به این صورت نمایش می دهند:
(15,30)=15
بزرگترین مقسوم علیه میان دو عدد را به اختصار به صورت " ب.م.م " می نویسند.
اگر ب.م.م دو عدد یک باشند ، آنگاه این دو عدد نسبت به هم اولند.مثلا دو عدد 13 و 8 هیچ مقسوم علیه مشترکی جز یک ندارند.
فهرست
عنوان………………………………………………………………………………………………….
پیش گفتار …………………………………………………………………………………………..
خلاصهی مطالب ………………………………………………………………………………….
1فصل اول ………………………………………………………………………………………….
1-1مقدمه …………………………………………………………………………………………..
1-2پیش نیازها …………………………………………………………………………………..
تعاریف ……………………………………………………………………………………………….
قضیه ها………………………………………………………………………………………………
2فصل دوم …………………………………………………………………………………………
2-2مرکز ……………………………………………………………………………………………
2-3 میانه …………………………………………………………………………………………..
2-4 مجموعه های غالب ……………………………………………………………………….
منابع …………………………………………………………………………………………………………..
پیش گفتار
تاریخ، خود نقطهی عطف شمارگانی است که پیوسته و ناپیوسته چهار مضراب عشق را حول محور تمرکز اعداد نواخته و به اثبات حقانیت واحد، دراصول هستی پرداخته است.
امتداد جریان ثبوت حقانیت شمارگان، خواه در آن برهه از زمان که خوارزمی اش میسرود و چه در دیگر زمان ها که اقلیدس و فیثاغورثش تجلی بخشیدند، شاه بیت های مطلعش را با تخلص آخرش پیوند زدند تا غزل گونه ای باشد، غزل شکار، نه تجنیسش افراط بخشیدند و نه جذرش تفریط، چرا که عدد یک واحد، دو واحد عدد یک ماند وخواهد ماند.
متن کامل را می توانید دانلود نمائید چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
پیش گفتار
تاریخ، خود نقطهی عطف شمارگانی است که پیوسته و ناپیوسته چهار مضراب عشق را حول محور تمرکز اعداد نواخته و به اثبات حقانیت واحد، دراصول هستی پرداخته است.
امتداد جریان ثبوت حقانیت شمارگان، خواه در آن برهه از زمان که خوارزمی اش میسرود و چه در دیگر زمان ها که اقلیدس و فیثاغورثش تجلی بخشیدند، شاه بیت های مطلعش را با تخلص آخرش پیوند زدند تا غزل گونه ای باشد، غزل شکار، نه تجنیسش افراط بخشیدند و نه جذرش تفریط، چرا که عدد یک واحد، دو واحد عدد یک ماند وخواهد ماند.
خلاصهی مطالب
برآن شدم تا با تلاش مستمر مطالبی را از نظر گرامیتان بگذرانم که بدیع باشد و قابل ارائه، امیدوارم رضایت خاطر شما خوانندگان گرامی را جلب نمایم. دراینجا خلاصهای از مطالبی که مطالعه خواهید کرد آورده شده است.
دریک حلقهی جابجایی و یکدار R، گراف مقسوم علیه صفر، ، گرافی است که رأس های آن مقسوم علیه های صفر غیرصفر R می باشند که درآن دو رأس مجزای xو y مجاورند هرگاه xy=0. این مقاله اثباتی براین مطلب است که اگر R نوتری باشد آن گاه شعاع ،0،1 و یا 2 می باشد و نشان داده می شود که وقتی R آریتن میباشد اجتماع مرکز با مجموعه {0} اجتماعی از ایده آل های پوچ ساز است. زمانی که مرکز گراف مشخص شده باشد می توان قطر را تعیین کرد و نشان داده میشود که اگر R حلقهی متناهی باشد آن گاه میانه زیر مجموعه ای از مرکز آن است. زمانی که R آریتن باشد با به کاربردن عناصری از مرکز میتوان یک مجموعهی غالب از ساخت و نشان داده می شود که برای حلقهی متناهی ، که F میدان متناهی است، عدد غالب مساوی با تعداد ایده آل های ماکسیمال مجزای R است. و همچنین نتایج دیگری روی ساختارهای بیان میشود.
واژه های کلیدی
مجموعه های مرکزی؛ حلقهی جابجایی؛ مقسوم علیه صفر؛ گراف مقسوم علیه صفر