فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی فوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پاورپوینت حسابان پایه سوم ریاضی مبحث دنباله های حسابی - 41 اسلاید

اختصاصی از فی فوو دانلود پاورپوینت حسابان پایه سوم ریاضی مبحث دنباله های حسابی - 41 اسلاید دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت حسابان پایه سوم ریاضی مبحث دنباله های حسابی - 41 اسلاید


دانلود پاورپوینت حسابان پایه سوم ریاضی مبحث دنباله های حسابی - 41 اسلاید

 

 

 

اگر باقی‌مانده‌ی تقسیم         بر       صفر باشد، داریم                            که در این حالت گوییم        بر

 بخش‌پذیر است.

قضیه: اگر         یک چند جمله‌ای باشد، آن‌گاه باقی‌مانده‌ی تقسیم         بر              برابر است با ، یعنی: .

بنابراین چند جمله‌ای          بر            بخش‌پذیر است اگر و تنها اگر:

مناسب برای دانش آموزان و دبیران و اولیا

برای دانلود کل پاورپوینت از لینک زیر استفاده کنید:


دانلود با لینک مستقیم


دانلود پاورپوینت حسابان پایه سوم ریاضی مبحث دنباله های حسابی - 41 اسلاید

دنباله ها(تصاعد ها)

اختصاصی از فی فوو دنباله ها(تصاعد ها) دانلود با لینک مستقیم و پر سرعت .

دنباله ها(تصاعد ها)


دنباله ها(تصاعد ها)

دانلود پاور پوینت حسابداری با موضوع : دنباله ها و تصاعد

تعداد اسلاید های این پروژه :20

این پروژه کامل و آماده تحویل میباشد


دانلود با لینک مستقیم


دنباله ها(تصاعد ها)

دانلود مقاله دنباله

اختصاصی از فی فوو دانلود مقاله دنباله دانلود با لینک مستقیم و پر سرعت .

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  32  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 

 

 

دنباله
مقدمه :
در ریاضیات ؛ دُنباله، تابعی است با دامنه ای مرکب ازاعداد طبیعی. این تابعها، کاربردهای فراوانی در حساب دیفرانسیل و انتگرال و سایر شاخه‌های ریاضیات دارند و گاهی، به فراخور نیاز، نام آنها تغییر می‌یابد. به عنوان مثال در نظریه تحلیلی اعداد، به دنباله‌ها، تابع حسابی می‌گویند.

 

تعریف دنباله
دنباله (sequence)، تابعی است که دامنه آن مجموعه اعداد طبیعی یا قطعه ای از مجموعه اعداد طبیعی باشد.
اگر دامنه دنباله قطعه‌ای از مجموعه اعداد طبیعی باشد، دنباله را متناهی می‌گوییم و اگر دامنه دنباله خود مجموعه اعداد طبیعی یا زیرمجموعه‌ای نامتناهی از آن باشد، دنباله را نامتناهی می‌گوییم.
به عنوان مثال دنباله اعداد طبیعی زوج کوچک‌تر از ۱۰ یک دنباله متناهی است چرا که دامنه آن قطعه‌ای از مجموعه اعداد طبیعی است و دنباله اعداد زوج دنباله‌ای نامتناهی است چرا که دامنه آن خود مجموعه اعداد طبیعی است.
برای مشخص کردن یک دنباله مانند هر تابع دیگر، باید دامنه و ضابطه آن را مشخص کرد. ضابطه یک دنباله را در اصطلاح جمله عمومی آن دنباله می‌گوییم. اگر f یک دنباله باشد جمله عمومی آن را با {(f(n} و یا به صورتی معمول‌تر به صورت {fn} نشان می‌دهیم.
به عنوان مثال دنباله اعداد طبیعی زوج را به این صورت
{fn} = {2n}
نشان می‌دهیم. همچنین برای نمایش مقدار دنباله f به ازای عدد طبیعی از نماد (f(n و یا معمولاً از نماد fn استفاده می‌کنیم.
به عنوان مثال در دنباله اعداد طبیعی زوج داریم:
f1 = 2,f2 = 4,...,fn = 2n

 

مفهوم دنباله
مجموعه اعداد زوج طبیعی را در نظر بگیرید:
اولین عضو این مجموعه عدد ۲ است و n امین عضو آن 2n است.
حال مجموعه اعداد طبیعی را در نظر بگیرید:
با کمی دقت متوجه می‌شویم که می‌توان یک تابع از مجموعه اعداد طبیعی به مجموعه اعداد طبیعی زوج تعریف نمود که هر عضو از مجموعه اعداد طبیعی را به یک عضو از مجموعه اعداد طبیعی زوج متناظر کند.
به عبارت دقیقتر می‌توان تابع را با ضابطه تعریف کرد.اگر این تناظر را به صورت مجموعه زوج‌های مرتب بنویسیم خواهیم داشت:
f = {(1,2),(2,4),(3,6),(4,8),...,(n,2n),...}
متوجه می‌شویم تابع f از مجموعه اعداد طبیعی به مجموعه اعداد طبیعی زوج، و هر عضو از دامنه خود را دو برابر می‌کند و به یک عضو از مجموعه اعداد طبیعی زوج متناظر می‌کند.

 


حال در مثالی دیگر تابع g(x) = (x − 3)2 + 1 را در نظر بگیرید. بیاید بجای اینکه به جای متغیر تابع عددی حقیقی قرار دهیم، متغیرهای طبیعی را جایگزین کنیم. در این صورت داریم:
g(1) = 5,g(2) = 2,g(3) = 1,g(4) = 2,...
مشاهده می‌کنید این تابع نیز هر عدد طبیعی را به عنوان متغیر دریافت می‌کند و آن را به یک عدد دیگر نسبت می‌دهد.
نمونه‌های دیگری نیز از این توابع وجود دارد مثلاً توابع f(n)=n2 یا ، که در آنها n عددی طبیعی است.
به چنین توابعی که از از مجموعه اعداد طبیعی به یک مجموعه دیگر تعریف می‌شوند دنباله می‌گوییم.
در دنباله اعداد طبیعی زوج، عدد 2 از برد تابع را جمله اول، عدد 4 را جمله دوم و به همین ترتیب عدد 2n را جمله n ام دنباله می‌گوییم. همین شیوه برای سایر دنباله‌ها نیز اعمال می‌شود.
به عبارت دقیق تر اگر (f(n ضابطه یک دنباله باشد جمله k ام این دنباله را (f(k تعریف می‌کنیم.
در یک دنباله، اعداد طبیعی در دامنه به گونه‌ای به اعضای برد متناظر می‌شوند که عدد طبیعی متناظر شده بیانگر شماره آن جمله در برد باشد.
به عنوان مثال در دنباله اعداد طبیعی زوج، عدد 1 در دامنه به عدد 2در برد که اولین جمله دنباله‌است متناظر می‌شود و عدد 10 از دامنه به عدد 20 از برد که جمله دهم است متناظر می‌شود و به همین ترتیب عدد n در دامنه به عدد 2n از برد که جمله n ام است متناظر می‌شود.

 

دنباله حقیقی
دنباله {fn} را دنباله حقیقی می‌گویند هرگاه تابعی از مجموعه اعداد طبیعی به مجموعه اعداد حقیقی باشد.
به عنوان مثال دنباله
دنباله‌ای حقیقی است چرا که برد آن از مجموعه اعداد حقیقی است.
• لازم به توضیح است معمولاً منظور از دنباله، دنباله‌ای حقیقی است.

 

نمودار یک دنباله
از آنجا که دنباله یک تابع با دامنه عداد طبیعی است می‌توان دنباله را به‌وسیله نمودار نیز نمایش داد. این نمایش با دو روش انجام می‌شود. در یک روش می‌توان مانند توابع دیگر آن را در دستگاه مختصات دکارتی رسم کرد و در روشی دیگر می‌توان جملات آن را به همراه ذکر شماره آن جمله روی محور اعداد نشان داد. با ذکر یک مثال دو روش را توضیح می‌دهیم.
به عنوان مثال می‌خواهیم دنباله اعداد زوج را به هر دو روش نشان دهیم:

 

به‌وسیله رسم نمودار در دستگاه مختصات دکارتی
برای این منظور محور افقی را برای متغیر انتخاب کرده و محور عمودی را برای نمایش تغییرات جملات دنباله استفاده می‌کنیم.
به‌وسیله رسم نمودار روی محور اعداد
برای این منظور روی محور اعداد مقدار جملات دنباله را یافته و شماره جمله را در بالا آن می‌نویسیم.

 

جمله عمومی یک دنباله
همانطور که گفته شد یک دنباله تابعی با دامنه مجموعه اعداد طبیعی است پس برای دنباله‌ها در حالت کلی می‌توان ضابطه تعیین کرد که به ضابطه یک دنباله جمله عمومی آن دنباله می‌گویند.
جمله عمومی یک دنباله به منزله یک قانون است که به‌وسیله آن هر عضو از دامنه(مجموعه اعداد طبیعی) به یک عضو از مجموعه برد متناظر می‌شود و به ازای هر مقدار از متغیر n، جملات دنباله را تولید می‌کند.
به عنوان مثال جمله عمومی دنباله اعداد طبیعی زوج به صورت {2n} است که همانند ضابطه تابع به‌وسیله آن می‌توان با قرار دادن هر n طبیعی جمله n ام دنباله را بدست آورد.
البته لازم به ذکر است جمله عمومی همه دنباله‌ها را نمی‌توان تعیین کرد.
به عنوان مثال تا کنون جمله عمومی برای دنباله اعداد اول تعیین نشده‌است. همچنین ممکن است یک سری از اعداد را به عنوان جملات دنباله انتخاب نمود که نتوان میان آنها رابطه‌ای برقرار نمود و جمله عمومی برای آنها نوشت. حال ممکن است این سوال پیش بیاید که آیا با در اختیار داشتن جملات یک دنباله می‌توان جمله عمومی آن را تعیین کرد؟
پاسخ را با یک مثال بررسی می‌کنیم. دنباله زیر را در نظر بگیرید:
{tn} = {3,5,7,...}
می‌خواهیم جمله عمومی این دنباله را با توجه به جملاتش تعیین کنیم. با مشاهدهٔ جملات ممکن است حدس شما این باشد که این دنباله، دنباله اعداد طبیعی فرد بزرگ‌تر از یک است و جمله عمومی آن را می‌توان به این صورت نوشت:
{tn} = {2n + 1}
اما این ممکن است یک جمله عمومی برای این دنباله باشد. ممکن است جملات دنباله در ادامه به این روال پیش نروند و جمله چهارم این دنباله عددی چون 9 نباشد!
چرا که ما از جمله سوم به بعد دنباله هیچ اطلاعی نداریم و هر عدد دیگری نیز می‌تواند باشد!
به عنوان مثال جمله عمومی دنباله فوق را می‌توان به این صورت نوشت:
{an} = {(n − 1)(n − 2)(n − 3) + 2n + 1}
با نوشتن جملات این دنباله داریم:
{an} = {3,5,7,15,...}
مشاهده می‌کنید جملات این دنباله تا جمله سوم همانند دنباله {tn} است ولی از جمله سوم به بعد مانند آن دنباله عمل نمی‌کند.
پس همواره از روی جملات یک دنباله نمی‌توان جمله عمومی آن را به درستی تعیین کرد. اما معمولاً برای نوشتن جمله عمومی یک دنباله با توجه به جملات آن، ساده ترین حالت را در نظر می‌گیریم. لذا جمله عمومی
{tn} = {2n + 1}
برای این دنباله و زودتر به ذهن خطور می‌کند.

 


رابطه بازگشتی و دنباله بازگشتی
به دنباله اعداد زوج دقت کنید:...,2,4,6,8,10,12
با کمی دقت در می‌یابید که برای بدست آوردن هر جمله کافی است جمله قبل را با عدد دو جمع کنید. به عنوان مثال برای بدست آوردن جمله پنجم(10) کافی است جمله چهارم(8) را با عدد دو جمع کنید. به این رابطه که بین جملات این دنباله برقرار است رابطه بازگشتی می‌گوییم.

 

تعریف
در بسیاری از دنباله‌ها بین هر جمله و جملات ماقبل یک رابطه‌ای وجود دارد که به‌وسیله آن می‌توان جملات بعدی را تعیین نمود. به چنین رابطه‌ای، رابطه بازگشتی می‌گوییم و به دنباله‌هایی با این رابطه، دنباله بازگشتی می‌گوییم.
از معروف ترین این دنباله‌ها می‌توان به دنباله فیبوناتچی و دنباله لوکا اشاره کرد.
به عنوان مثال دنباله فیبوناتچی دارای چنین رابطه‌ای است که به‌وسیله آن مشخص می‌شود:
که جملات آن به این صورت است:...,1,1,2,3,5,8,13,21
مشاهده می‌شود برای بدست آوردن هر جمله از جمله دوم به بعد کافی است دو جمله ماقبل آن جمله را با هم جمع کنیم. مثلاً برای محاسبه جمله نهم داریم:
F9 = F8 + F7 = 21 + 13 = 34

 

یکنوایی دنباله‌ها
دنباله {an} را:
• صعودی (نا نزولی) می‌گوییم هرگاه
یا به عبارت دیگر برای هر عدد طبیعی n داشته باشیم
همچنین اگر جملات دنباله همگی مثبت باشند صعودی بودن دنباله را می‌توان با شرط زیر بیان کرد:
• نزولی(ناصعودی) گوییم هرگاه
یا به عبارت دیگر برای هر عدد طبیعی n داشته باشیم
همچنین اگر جملات دنباله همگی مثبت باشند نزولی بودن دنباله را می‌توان به صورت زیر بیان کرد:
دنباله صعودی یا نزولی را یکنوا می‌گوییم.
همچنین دنباله {an} را اکیداً صعودی می‌گوییم هرگاه برای هر عدد طبیعی n داشته باشیم
an + 1 > an
و دنباله را اکیداً نزولی می‌گوییم هرگاه
an + 1 < an
یک دنباله را اکیداً یکنوا می‌گوییم هرگاه اکیداً صعودی یا نزولی باشد.

 

تابع
در ریاضیات ، تابع رابطه‌ای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعه‌ای دیگر (شاید یک عضو از مجموعه) را بیان می‌کند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخه‌های ریاضی به حساب می‌آید. مفاهیم تابع ، نگاشت و تبدیل معمولاً مفاهیم مشابه‌ای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل می‌شوند.

 

 

 

تساوی دو تابع
فرض کنید f:X→Y و g:Z→W دو تابع باشند. در این صورت تساوی f=g، تساوی بین دو مجموعه است و لذا f=g اگر و فقط اگر اعضای f و g یکسان باشند. یا به عبارتی دو تابع f و g با هم برابرند اگر و تنها اگر دامنه‌شان با هم برابر باشد و برای هر x از دامنه مشترکشان، (f(x)=g(x.
تحدید و توسیع
فرض کنید f:X→Y یک تابع و A زیرمجموعه‌ای از X باشد. در این صورت یک روش برای ساختن تابعی چون g از مجموعه A به مجموعه Y این است که برای هر g(x)، x∈A را مساوی (f(x تعریف کنیم. یعنی تابع g:A→Y با ضابطه (g(x)=f(x. بر خواننده‌است که خوش تعریفی این تابع را تحقیق کند. ممکن است راه دیگری نیز برای بیان این مطلب بیابیم و آن این است که دامنه تابع f را به زیرمجموعه A از X تقلیل دهیم. در این صورت تابعی خواهیم داشت که این بار نه بر روی همه اعضای X بلکه فقط بر روی عناصر زیرمجموعه خاصی از X یعنی A اثر می‌کند و لذا دامنه آن از X به A تغییر می‌یابد. چنین تابعی را که همان g است تحدید تابع f به مجموعه A می‌گوییم و آن را با f|A یا f|A نشان می‌دهیم. با این نمادگذاری داریم g=f|A. همچنین تابع f را توسیع تابع g به مجموعه X می‌گوییم.
بنابراین مفاهیم تحدید و توسیع دو مفهوم متقابل به هم می‌باشند. تحدید یک تابع به زیرمجموعه‌ای از دامنه خود همواره یک تابع است اما توسیع دامنه یک تابع به یک مجموعه جدید که دامنه تابع قبل زیرمجموعه‌ای از آن است همواره تابع نمی‌باشد ولذا در مورد توسیع توابع احتیاط بیشتری لازم است. به طور کلی اگر f:A→Y یک تابع باشد توسیع تابع f به مجموعه X تابعی چون g با دامنه X است، به طوری که تحدید g به مجموعه A برابر تابع f باشد یعنی g|A=f.
هچنین می‌توان همدامنه یک تابع را نیز تحدید کرد البته در این کار احتیاط لازم است، چراکه نباید اعضایی را که متعلق به برد تابع است را حذف نمود. اما اگر f:X→Y یک تابع باشد، با تحدید Y به (f(X که همان برد تابع f است می‌توان تابع (f:X→f(X را تشکیل داد که پوشا نیز هست.
تصویر و تصویر معکوس
اگر f:X→Y یک تابع و A زیرمجموعه‌ای از X باشد، ممکن است بخواهیم مجوعه‌ای را در نظر بگیریم که عناصر آن تصویر عناصر A تحت f می‌باشند. یعنی مجموعه‌ای که از تأثیر تابع f روی هر عضو مجموعه A حاصل می‌شود. چنین مجموعه‌ای را تصویر یا نگاره A تحت تابع f می‌گوییم و آن را با (f(A نشان می‌دهیم و به این صورت تعریف می‌کنیم:
بنابر این (y∈f(A اگر وفقط اگر به ازای y= f(x)، x∈A یا به بیان نمادین:
به عنوان مثال اگر {X={۱٬۲٬۳٬۴٬۵ و {Y={a,b,c,d,e و f:X→Y به صورت:
{(f={(۱,a),(۲,b),(۳,c),(۴,d),(۵,d
تعریف شود و زیرمجموعه A از X به صورت {A={۱٬۳٬۴ در نظر گرفته شود در این صورت:
{f(A)={f(۱),f(۳),f(۴)}={a,c,d
حال چون X نیز یک زیرمجموعه‌ای از خودش است می‌توان (f(X را نیز تشکیل داد، که در این صورت بنا به تعریف داریم:
که عبارت است از مجموعه همه عناصری از Y است که تصویر عضوی از X تحت f باشند که بنابه تعریف همان برد تابع f یعنی ranf است. به این ترتیب برد f را می‌توان تصویر X تحت تابع f تعریف کرد.
اجتماع توابع-توابع چند ضابطه‌ای
بسیار اتفاق می‌افتند که مقدار یک تابع در سراسر دامنه‌اش با یک ضابطه مشخص نمی‌شود مثلاً ممکن است دامنه تابع f که آن را X می‌نامیم را به n مجموعه X۱,X۲,X۳,...,Xn افراز کنیم و تابع f با دامنه X را برای هر x∈Xi به صورت (f(x)=fi(x تعریف کنیم که در آن fi تابعی با دامنه Xi است. همچنین در این صورت می‌توان تابع f را برای هر x از دامنه به صورت زیر نوشت:
در این صورت f را تابعی با n ضابطه می‌گوییم.
در مثالی دیگر فرض کنید f:X→Y و g:Z→W دو تابع باشند که برای هر x متعلق به اشتراک X و Y (اشتراک دامنه f,g) داشته باشیم (f(x)=g(x. در این صورت تابع اجتماع دو تابع f,g را به صورت زیر تعریف می‌کنیم:
برخواننده‌است که خوش تعریفی این تابع را تحقیق کند. این مفهوم را می‌توان گسترش داد یعنی اگر خانواده‌ای از مجموعه‌های دو به دو جدا از هم باشد و برای هر fi,i∈I تابعی با دامنه Ai باشد، می‌توان تابع f، اجتماع توابع fi برای هر i∈I را با دامنه را به صورت برای هر x از دامنه به صورت
(f(x)=fi(x اگر x∈Ai تعریف کرد. در ادامه نمونه‌هایی از توابع چند ضابطه‌ای را خواهید دید.
نمودار تابع

 

شکل ۳. نمودار پیکانی یک تابع
منظور از نمودار یک تابع f:X→Y به تصویر کشیدن تناظری است که f بین دو مجوعه X و Y ایجاد می‌کند. برای این کار برای همه روابط و بلاخص توابع عموماً از نمودار پیکانی استفاده می‌شود. برای رسم نمودار پیکانی تابع f:X→Y، دو منحنی بسته، نظیر آنچه در نمودار ون استفاده می‌شود را برای نمایش مجموعه X و Y انتخاب می‌کنیم و عناصر هر یک را به‌وسیله نقاطی در آنها مشخص می‌کنیم. سپس بین هر عضو x∈X و (f(x یک پیکان از x به (f(x به نشانه تناظر بین آن دو رسم می‌کنیم. به عنوان مثال اگر {X={۱٬۲٬۳٬۴٬۵ و {Y={a,b,c,d,e و f:X→Y به صورت {(f={(۱,a),(۲,b),(۳,c),(۴,d),(۵,d تعریف شده باشد نمودار پیکانی آن به صورت مقابل است.

 

شکل ۴. نمونه‌ای از نمودار یک تابع حقیقی در دستگاه مختصات دکارتی
این روش گرچه مناسب است ولی برای نمایش همه توابع بویژه توابعی با دامنه اعداد حقیقی(و به طور کلی توابعی که عددی هستند) چندان کاربرد ندارد. اگر f تابعی با دامنه اعداد حقیقی R باشد آن را تابع حقیقی می‌گوییم و برای نمایش نمودار آن از دستگاه مختصات دکارتی استفاده می‌کنیم و روش کار به این صورت است که برای هر x∈R زوج مرتب ((x,f(x) که نماینده نقطه‌ای در صفحه دکارتی است را رسم می‌کنیم و به این ترتیب نمودار تابع f حاصل می‌شود. رسم نمودار تابع، باعث می‌شود دیدی کلی نسبت به آن تابع پیدا کنیم و همچنین بسیاری از خواص مربوط به توابع بویژه توابع حقیقی مانند پیوستگی، مشتق پذیری، نقاط بحرانی و عطف، صعودی یا نزولی بودن و... از روی نمودار آنها قابل تعیین است. به عنوان مثال با بررسی شکل (۴) می‌توان گفت این تابع در چه بازه‌هایی صعودی و در چه بازه‌هایی نزولی است، این تابع در سراسر دامنه خود پیوسته و مشتق پذیر است، دارای دو نقطه بحرانی و یک نقطه عطف است و....

 

شکل ۵
همچنین از روی نمودار یک رابطه می‌توان تابع بودن آن را بررسی کرد. به عنوان مثال نمودار شکل (۱) معرف یک تابع نیست، زیرا عضو ۳ به دو مقدار متناظر شده‌است. همچنین در نمودار رسم شده در دستگاه دکارتی در شکل (۵)، برای هر عدد حقیقی مثبت x دو مقدار وجود دارد. به طور کلی یک نمودار در دستگاه مختصات دکارتی یک تابع است اگر هر خط عمودی مرسوم بر محور xها نمودار را حداکثر در یک نقطه قطع کند.
نکته کاربردی و مهم: اگر دامنه تابع f دارای بعد n و برد آن دارای بعد m باشد،نمودار تابع f دارای بعد n+m خواهد بود.
فضای توابع
اگر X و Y دو مجوعه باشند مجموعه همه توابع از مجموعه X به مجموعه Y را با YX نشان می‌دهیم و بنابه تعریف داریم:
عدد اصلی این مجموعه را نیز می‌توان به صورت زیر بدست آورد(برای اثبات به مقاله حساب اعداد اصلی رجوع کنید.):
card(YX) = (cardY)cardX
از رابطه فوق نتیجه می‌شود اگر X مجوعه‌ای n عضوی و Y مجموعه‌ای m عضوی باشد تعداد توابع قابل تعریف از مجوعه X به مجموعه Y برابر است با mn که البته برای اثبات این مسئله خاص راه حل ترکیباتی هم وجود دارد. توضیح اینکه اگر بخواهیم تابع f:X→Y را تعریف کنیم هر عضو از n عضو مجموعه X چون x∈X، را می‌توان به m طریق به یک عضو از مجموعه Y نسبت داد. پس بنا بر اصل شمارش تعریف چنین تابعی به mn طریق ممکن خواهد بود.

 

تعریف تابع
در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید می‌کند معکوس این مطلب را در تعریف تابع بکار نمی‌برند. یعنی در واقع یک تابع می‌تواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولید کند. برای مثال با فرض y=x2 با ورودیهای 5- و 5 خروجی یکسان 25 را خواهیم داشت. در بیان ریاضی تابع رابطه‌ای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.

 

به عنوان مثال تابع f(x)=x2 بیان می‌کند که ارزش تابع برابر است با مربع هر عددی مانند x

 

 

 

 

 

 

 

 

 

 

 

 

 

در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی می‌کنند. با این شرط که هرگاه دو زوج با مولفه‌های اول یکسان در این رابطه موجود باشند آنگاه مولفه‌های دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه می‌نامند. مفهوم تابع اساسی اکثر شاخه‌های ریاضی و علوم محاسباتی می‌باشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم.

 

فقط کافیست این مطلب را بدانیم که برای هر ورودی تنها یک خروجی ایجاد می‌شود در چنین حالتی تابع را می‌توان به عنوان یک جعبه سیاه در نظر گرفت که برای هر ورودی یک خروجی تولید می‌کند. همچنین لزومی ندارد که ورودی یک تابع ، عدد و یا مجموعه باشد. یعنی ورودی تابع را می‌توان هر چیزی دلخواه در نظر گرفت البته با توجه به تعریف تابع و این مطلبی است که ریاضیدانان در همه جا از آن بهره می‌برند.
تاریخچه تابع
نظریه مدرن توابع ریاضی بوسیله ریاضیدان بزرگ لایب نیتر مطرح شد همچنین نمایش تابع بوسیله نمادهای (y=f(x توسط لئونارد اویلر در قرن 18 اختراع گردید، ولی نظریه ابتدایی توابع به عنوان عملکرهایی که برای هر ورودی یک خروجی تولید کند توسط جوزف فوریه بیان شد. برای مثال در آن زمان فوریه ثابت کرد که هر تابع ریاضی سری فوریه دارد.

 

چیزی که ریاضیدانان ما قبل اوبه چنین موردی دست نیافته بودند، البته موضوع مهمی که قابل ذکر است آنست که نظریه توابع تا قبل از بوجود آمدن نظریه مجموعه‌ها در قرن 19 پایه و اساس محکمی نداشت. بیان یک تابع اغلب برای مبتدی‌ها با کمی ابهام همراه است، مثلا برای توابع کلمه x را به عنوان ورودی و y را به عنوان خروجی در نظر می‌گیرند ولی در بعضی جاها y,x را عوض می‌کنند.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   32 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله دنباله